

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-boardinghouse 0.3.5 documentation

django-boardinghouse

Multi-tenancy for Django applications, using Postgres Schemas.

[image: Build status]
 [https://codeship.com/projects/27653][image: Coverage status]
 [https://coveralls.io/bitbucket/schinckel/django-boardinghouse?branch=default][image: Dependencies status]
 [https://requires.io/bitbucket/schinckel/django-boardinghouse/requirements.svg/?branch=default][image: Documentation Status]
 [https://readthedocs.org/projects/django-boardinghouse/][image: PyPI release version]
 [https://pypi.python.org/pypi/django-boardinghouse][image: Supported python versions][image: Download count][image: Wheel available?]

	Philosophy
	Multi-tenancy or multi-instance?

	Data storage type

	How it works

	Postgres Table Inheritance, and why it is not (yet?) used

	Installation/Usage
	Requirements

	Installation and Configuration

	Usage

	Interaction with other packages

	Examples
	Boarding School

	Included Extensions
	boardinghouse.contrib.invite

	boardinghouse.contrib.template

	boardinghouse.contrib.roles

	boardinghouse.contrib.shared_roles

	boardinghouse.contrib.demo

	boardinghouse.contrib.access

	Development

	TODO
	Tests to write

	Example Project

	Release Notes
	0.3.5

	Code
	boardinghouse package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Philosophy

Multi-tenancy or multi-instance?

I’ll refer to multi-instance as a system where each user has an individual installation of the software, possibly on a different machine, but always running in a different database. From a web application perspective, each installation would probably have it’s own domain name. It’s very likely that for small applications, instances may be on the same physical machine, although they would either be in seperate Virtual Machines (at an operating system level), or in seperate VirtualHosts (in apache-speak).

Multi-tenancy, on the other hand, shares a code-base, but the data storage may be partitioned in one of several ways:

	Foreign-key separation only.

	Completely seperate databases.

	Some shared data, some seperated data.

Of these, the third one is what this project deals with: although with a different perspective to other projects of a similar ilk. This is a hybrid approach to the first two, and I’ll discuss here why I think this is a good way to build a system.

Firstly, though, some rationalé behind selecting a multi-tenanted over a multi-instance approach.

	Single code-base. Only one deployment is required. However, it does mean you can’t gradually roll-out changes to specific tenants first (unless that is part of your code base).

	Economy of scale. It’s unlikely that any given tenant will have a usage pattern that requires large amounts of resources. Pooling the tenants means you can have fewer physical machines. Again, this could be done by having virtual environments in a multi-instance approach, but there should be less overhead by having less worker threads.

	Data aggregation. It’s possible (depending upon data storage) to aggregate data across customers. This can be used for comparative purposes, for instance to enable customers to see how they perform against their peers, or purely for determining patterns.

Data storage type

It is possible to build a complex, large multi-tenanted application purely using foreign keys. That is, there is one database, and all data is stored in there. There is a single customers table (or equivalent), and all customer data tables contain a foreign key relationship to this table. When providing users with data to fulfill their requests, each set of data is filtered according to this relationship, in addition to the other query parameters.

This turns out to not be such a great idea, in practice. Having an extra column in every field in the database means your queries become a bit more complex. You can do away with some of the relationships (invoices have a relationship to customers, so items with a relationship to invoices have an implicit relationship to customers), however this becomes ever more difficult to run reports.

There are still some nice side effects to using this approach: the first and foremost is that you only need to run database migrations once.

The other common approach is to use the same code-base, but a different database per-tenant. Each tenant has their own domain name, and requests are routed according to the domain name. There are a couple of django applications that do this, indeed some even use Postgres schemata instead of databases.

However, then you lose what can be an important feature: different tenants users access the system using different domain names.

The third approach, the one taken by this package is that there are some special tables that live in the public schema, and everything lives in a seperate schema, one per tenant.

This allows us to take advantage of several features of this hybrid structure:

	A request is routed to a specific schema to fetch data, preventing data access from all other schemata. Even programmer error related to foreign keys keeps data protected from other customers.

	It is possible to run ad-hoc queries for reporting against data within a single schema (or even multiple schemata). No need to ensure each table is filtered according to customers.

	Users all log in at the same domain name: users have a relationship with a schema or schemata, and if business logic permits, may select between different schemata they are associated with.

How it works

Within the system, there is a special model: boardinghouse.models.Schema. Whenever new instances of this model are created, the system creates a new Postgres schema with that name, and clones a copy of the table structure into that (from a special __template__ schema, which never contains data).

Whenever Django changes the table structure (for instance, using migrate), the DDL changes are applied to each known schema in turn.

Whenever a request comes in, boardinghouse.middleware.SchemaMiddleware determines which schema should be active, and sets the Postgres search_path accordingly. If a user may change schema, they may request a schema activation for one of their other available schemata, and any future requests will only present data from that schema.

Models will, by default, only live in a non-shared schema, unless they:

	are explicitly marked within their definition as shared, by subclassing boardinghouse.base.SharedSchemaModel, or by having the attribute _is_shared_model set to True.

	are listed in settings.BOARDINGHOUSE.SHARED_MODELS.

There is an example project.

Postgres Table Inheritance, and why it is not (yet?) used

Using Postgres Table Inheritance [http://www.postgresql.org/docs/current/static/tutorial-inheritance.html], it’s possible to obtain a couple of extra features that could be useful in this context. These are worth outlining: however at this point in time, handling edge cases related to the inheritance of constraints means that the migration code itself became far more complex.

Basically, table inheritance means that it could be possible to only have to apply migrations to the base table, and all tables that inherit from this would automatically be altered in the same way. This works great, as long as your alterations are of the structure of the table, but not including UNIQUE, FOREIGN KEY or PRIMARY KEY constraints. CHECK constraints, and NOT NULL constraints are fine.

Handling the various combinations of this from within the migration execution stack turned out to be quite complicated: I was able to get almost all tests to pass, but the code became far more difficult to reason about.

The basic technique is to create the tables in the same way as when doing the database-level clone_schema operation (CREATE TABLE ... (LIKE ... INCLUDING ALL)), but after this ALTER TABLE ... INHERIT This worked really well, and retained all of the orignal constraints. Migrations like adding or removing a column worked as well, but keeping track of when items needed to be applied to all schemata, or just the template became challenging.

The other side-effect of table inheritance could be a positive or negative. When querying on the base table, all inherited tables data are also returned. In theory this could allow for an inheritance tree of schemata related to business requirements (think a master franchisor as the base table, and all franchisees as inheriting from this). It would also mean that UPDATE statements could also be applied once (to the template/base), further improving migration performance.

This is the real reason this line of thought was even considered: I still feel that migrations are far too slow when dealing with large numbers of schemata.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Installation/Usage

Requirements

	Django [https://www.djangoproject.com/]

	Postgres [http://www.postgresql.org/]

	psycopg2 [https://pypi.python.org/pypi/psycopg2/] or psycopg2cffi [https://pypi.python.org/pypi/psycopg2cffi] if using PyPy [https://pypy.org/]

This application requires, and depends upon Django [https://www.djangoproject.com/] being installed. Only Django 1.7 and above is supported, but if you are still using 1.7 then you really should upgrade!

Postgres is required to allow schema to be used. psycopg2 [https://pypi.python.org/pypi/psycopg2/] or psycopg2cffi [https://pypi.python.org/pypi/psycopg2cffi] is required as per normal Django/Postgres integration.

Installation and Configuration

Install it using your favourite installer: mine is pip [https://pip-installer.org/]:

pip install django-boardinghouse

You will need to add boardinghouse to your settings.INSTALLED_APPS.

You will need to use the provided database engine in your settings.DATABASES:

'boardinghouse.backends.postgres'

django-boardinghouse automatically installs a class to your middleware (see Middleware), and a context processor (see Template Variables). If you have the admin installed, it adds a column to the admin django.contrib.admin.models.LogEntry class, to store the object schema when applicable.

It’s probably much easier to start using django-boardinghouse right from the beginning of a project: trying to split an existing database may be possible, but is not supported at this stage.

Usage

Shared Models

Some models are required by the system to be shared: these can be seen in:

	
boardinghouse.schema.REQUIRED_SHARED_MODELS = ['auth.user', 'auth.permission', 'auth.group', 'boardinghouse.schema', 'sites.site', 'sessions.session', 'contenttypes.contenttype', 'admin.logentry', 'migrations.migration', <function <lambda> at 0x7fb42b3a9ed8>, <function <lambda> at 0x7fb42b3aba28>]

	These models are required to be shared by the system.

Other shared classes must subclass boardinghouse.base.SharedSchemaModel, or mixin boardinghouse.base.SharedSchemaMixin. This is required because the migration creation code will not pick up the _is_shared_model attribute, and will attempt to create the table in all schemata.

If a model is listed in the settings.SHARED_MODELS list, then it is deemed to be a shared model. This is how you can define that a 3rd-party application’s models should be shared.

If a model contains only foreign keys to other models (and possibly a primary key), then this model will be shared if all linked-to models are shared (or any of the above conditions are true).

All other models are deemed to be schema-specific models, and will be put into each schema that is created.

Management commands

When django-boardinghouse has been installed, it will override the following commands:

boardinghouse.management.commands.migrate

We wrap the django migrate command to ensure the search path is set to
public,__template__, which is a special case used only during DDL
statements.

boardinghouse.management.commands.flush

If django 1.7 or greater is installed, wrap the included flush command
to ensure:

	the clone_schema function is installed into the database.

	the __template__ schema is created.

	the search path to public,__template__, which is a special case
used only during DDL statements.

	when the command is complete, all currently existing schemata in the
SCHEMA_MODEL table exist as schemata in the database.

boardinghouse.management.commands.loaddata

This replaces the loaddata command with one that takes a new
option: --schema. This is required when non-shared-models are
included in the file(s) to be loaded, and the schema with this name
will be used as a target.

boardinghouse.management.commands.dumpdata

Replaces the dumpdata command.

If the --schema option is supplied, that schema is used for the
source of the data. If it is not supplied, then the __template__
schema will be used (which will not contain any data).

If any models are supplied as arguments (using the app_label.model_name
notation) that are not shared models, it is an error to fail to pass a schema.

Middleware

The included middleware is always installed:

	
class boardinghouse.middleware.SchemaMiddleware[source]

	Middleware to set the postgres schema for the current request’s session.

The schema that will be used is stored in the session. A lookup will
occur (but this could easily be cached) on each request.

There are three ways to change the schema as part of a request.

	Request a page with a querystring containg a __schema value:

https://example.com/page/?__schema=<schema-name>

The schema will be changed (or cleared, if this user cannot view
that schema), and the page will be re-loaded (if it was a GET). This
method of changing schema allows you to have a link that changes the
current schema and then loads the data with the new schema active.

It is used within the admin for having a link to data from an
arbitrary schema in the LogEntry history.

This type of schema change request should not be done with a POST
request.

	Add a request header:

X-Change-Schema: <schema-name>

This will not cause a redirect to the same page without query string. It
is the only way to do a schema change within a POST request, but could
be used for any request type.

	Use a specific request:

https://example.com/__change_schema__/<schema-name>/

This is designed to be used from AJAX requests, or as part of
an API call, as it returns a status code (and a short message)
about the schema change request. If you were storing local data,
and did one of these, you are probably going to have to invalidate
much of that.

You could also come up with other methods.

Template Variables

There is an included CONTEXT_PROCESSOR that is always added to the
settings for a project using django-boardinghouse.

	
boardinghouse.context_processors.schemata(request)[source]

	A Django context_processor that provides access to the
logged-in user’s visible schemata, and selected schema.

Adds the following variables to the context:

schemata: all available schemata this user has

selected_schema: the currenly selected schema name

Changing Schema

As outlined in Middleware, there are three ways to change the schema: a __schema querystring, a request header and a specific request.

These all work without any required additions to your urls.py.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Interaction with other packages

Because of the way django-boardinghouse patches django, there may be implications for the way other packages behave when both are installed.

There are no notes at this time.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Examples

Boarding School

Technically, this example has nothing to do with an actual boarding school, it just seemed like a clever name for a project based on a school.

This project provides a simple working example of a multi-tenanted django project using django-boardinghouse.

To set up and run project:

cd examples/boarding_school
make all

This will create the database, install the requirements, and set up some example data.

When this is complete, you’ll want to start up a server:

./manage.py runserver 127.0.0.1:8088

Finally, visit http://127.0.0.1:8088/admin/ and log in with username admin, password password. There is a fully functioning django project, with two schemata (schools) installed, and a smattering of data.

You can see that visiting a model that is split across schemata only shows objects from the current schema, and changing the visible schema will reload the page with the new data.

Also note that it’s not possible to change the schema when viewing an object that belongs to a schema.

At this stage, all of the functionality is contained within the admin interface.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Included Extensions

boardinghouse.contrib.invite

Note

This app is incomplete.

One of the real ideas for how this type of system might work is Xero [http://www.xero.com], which allows a user to invite other people to access their application. This is a little more than just the normal registration process, as if the user is an existing Xero user, they will get the opportunity to link this Xero Organisation to their existing account.

Then, when they use Xero, they get the option to switch between organisations... sound familiar?

The purpose of this contrib application is to provide forms, views and url routes that could be used, or extended, to recreate this type of interaction.

The general pattern of interaction is:

	User with required permission (invite.create_invitation) is able to generate an invitation. This results in an email being sent to the included email address (and, if a matching email in this system, an entry in the pending_acceptance_invitations view), with the provided message.

Note

Permission-User relations should really be per-schema, as it is very likely that the same user will not have the same permission set within different schemata. This can be enabled by using boardinghouse.contrib.roles, for instance.

	Recipient is provided with a single-use redemption code, which is part of a link in the email, or embedded in the view detailed above. When they visit this URL, they get the option to accept or decline the invitation.

	Declining the invitation marks it as declined, provides a timestamp, and prevents this invitation from being used again. It is still possible to re-invite a user who has declined (but should provide a warning to the logged in user that this user has already declined an invitation).

	Accepting the invitation prompts the user to either add this schema to their current user (if logged in), or create a new account. If they are not logged in, they get the option to create a new account, or to log in and add the schema to that account. Acceptance of an invitation prevents it from being re-used.

It is possible for a logged in user to see the following things (dependent upon permissions in the current schema):

	A list of pending (non-accepted) invitations they (and possibly others) have sent.

	A list of declined and accepted invitations they have sent.

	A list of pending invitation they have not yet accepted or declined. This page can be used to accept or decline.

boardinghouse.contrib.template

Note

This app has not been developed.

Introduces the concept of “Template” schemata, which can be used to create a schema that contains initial data.

Actions:

	Create schema from template

	Create template from schema

Template schema have schema names like: __template_<id>, and can only be activated by users who have the relevant permission.

boardinghouse.contrib.roles

Note

This app has not been developed.

This app enables per-schema roles, which are a basically the same as the normal django groups, except they are not a SharedSchemaModel.

They are intended for end-user access and configuration.

boardinghouse.contrib.shared_roles

Note

This app has not been developed.

This app alters the django.contrib.auth application, so that, whilst the Group model remains a SharedSchemaModel, the relationships between User and Group, and the relationship between User and Permission are actually schema-aware.

This basically requires us just to move the auth_group_permissions table into the various schemata.

Can we just do this by having a

boardinghouse.contrib.demo

Note

This app has not been developed.

Borrowing again from Xero [http://www.xero.com], we have the ability to create a demo schema: there can be at most one per user, and it expires after a certain period of time, can be reset at any time by the user, and can have several template demos to be based upon.

Actions:

	Create a new demo schema for the logged in user (replacing any existing one), from the provided demo-template.

Automated tasks:

	Delete any demo schemata that have expired.

boardinghouse.contrib.access

Note

This app is still being planned.

Store the last accessor of each schema, like in the Xero [http://www.xero.com] dashboard view.

Organisations

	Name
	Last accessed
	Role

	Larson, Inc.
	Today, 5:58pm
by Bob Smith
	Adviser

	Leffler, Mertz and
Roberts
	Today, 7:58pm
by Bob Smith
	Adviser

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Development

[image: Build status]
 [https://codeship.com/projects/27653][image: Coverage status]
 [https://coveralls.io/bitbucket/schinckel/django-boardinghouse?branch=default][image: Dependencies status]
 [https://requires.io/bitbucket/schinckel/django-boardinghouse/requirements.svg/?branch=default][image: Documentation Status]
 [https://readthedocs.org/projects/django-boardinghouse/][image: PyPI release version]
 [https://pypi.python.org/pypi/django-boardinghouse][image: Supported python versions][image: Download count][image: Wheel available?]You can run tests across all supported versions using tox [http://tox.readthedocs.org]. Make sure you have a checked-out version of the project from:

https://bitbucket.org/schinckel/django-boardinghouse/

If you have tox [http://tox.readthedocs.org] installed, then you’ll be able to run it from the checked out directory.

Bugs and feature requests can be reported on BitBucket, and Pull Requests may be accepted.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

TODO

	Add in views for allowing inviting of users (registered or not) into a schema.

	Provide a better error when loaddata is run without --schema, and an error occurred.

	Use the schema attribute on serialised objects to load them into the correct schema. I think this is possible.

Tests to write

	Test middleware handling of boardinghouse.schema.TemplateSchemaActivated.

	Ensure get_admin_url (non-schema-aware model) still works.

	Test backwards migration of boardinghouse.operations.AddField

	Test running migration (boardinghouse.backends.postgres.schema.wrap(), specifically.)

	Test boardinghouse.schema.get_active_schema_name()

	Test saving a schema clears the global active schemata cache

User.visible_schemata property testing:

	Test adding schemata to a user clears the cache.

	Test removing schemata from a user clears the cache.

	Test adding users to schema clears the cache.

	Test removing users from a schema clears the cache.

	Test saving a schema clears the cache for all associated users.

Example Project

	include user and log-entry data in fixtures

	write some non-admin views and templates

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Release Notes

0.3.5

Use migrations instead of running db code immediately. This is for creating the __template__ schema, and installing the clone_schema() database function.

Rely on the fact that settings.BOARDINGHOUSE_SCHEMA_MODEL is always set, just to a default if not explicitly set. Same deal for settings.PUBLIC_SCHEMA.

Use a custom subclass of migrations.RunSQL to allow us to pass extra data to the statement that creates the protect_schema_column() database function.

Include version numbers in SQL file names.

Move schema creation to a post-save signal, and ensure this signal fires when using Schema.objects.bulk_create().

Register signal handlers in a more appropriate manner (ie, not in models.py).

Update admin alterations to suit new CSS.

Improve tests and documentation.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

Code

	boardinghouse package
	Subpackages
	boardinghouse.backends package
	Subpackages

	Module contents

	boardinghouse.contrib package
	Subpackages

	Module contents

	boardinghouse.management package
	Subpackages

	Module contents

	boardinghouse.migrations package
	Submodules

	Module contents

	boardinghouse.templatetags package
	Submodules

	Module contents

	Submodules
	boardinghouse.admin module

	boardinghouse.apps module

	boardinghouse.base module

	boardinghouse.context_processors module

	boardinghouse.middleware module

	boardinghouse.models module

	boardinghouse.operations module

	boardinghouse.schema module

	boardinghouse.settings module

	boardinghouse.signals module

	Module contents
	Django Boardinghouse

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

boardinghouse package

Subpackages

	boardinghouse.backends package
	Subpackages
	boardinghouse.backends.postgres package
	Submodules
	boardinghouse.backends.postgres.base module

	boardinghouse.backends.postgres.schema module

	Module contents

	Module contents

	boardinghouse.contrib package
	Subpackages
	boardinghouse.contrib.demo package
	Module contents

	boardinghouse.contrib.invite package
	Subpackages
	boardinghouse.contrib.invite.migrations package
	Submodules
	boardinghouse.contrib.invite.migrations.0001_initial module

	Module contents

	Submodules
	boardinghouse.contrib.invite.admin module

	boardinghouse.contrib.invite.forms module

	boardinghouse.contrib.invite.models module

	boardinghouse.contrib.invite.urls module

	boardinghouse.contrib.invite.views module

	Module contents

	boardinghouse.contrib.template package
	Subpackages
	boardinghouse.contrib.template.migrations package
	Submodules
	boardinghouse.contrib.template.migrations.0001_initial module

	Module contents

	Submodules
	boardinghouse.contrib.template.admin module

	boardinghouse.contrib.template.models module

	Module contents

	Module contents

	boardinghouse.management package
	Subpackages
	boardinghouse.management.commands package
	Submodules
	boardinghouse.management.commands.dumpdata module

	boardinghouse.management.commands.flush module

	boardinghouse.management.commands.loaddata module

	boardinghouse.management.commands.migrate module

	Module contents

	Module contents

	boardinghouse.migrations package
	Submodules
	boardinghouse.migrations.0001_initial module

	boardinghouse.migrations.0002_patch_admin module

	Module contents

	boardinghouse.templatetags package
	Submodules
	boardinghouse.templatetags.boardinghouse module

	Module contents

Submodules

	boardinghouse.admin module

	boardinghouse.apps module

	boardinghouse.base module

	boardinghouse.context_processors module

	boardinghouse.middleware module

	boardinghouse.models module

	boardinghouse.operations module

	boardinghouse.schema module

	boardinghouse.settings module

	boardinghouse.signals module

Module contents

Django Boardinghouse

Multi-tenancy for Django applications, using Postgres Schemas.

See full documentation at: http://django-boardinghouse.readthedocs.org

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.backends package

Subpackages

	boardinghouse.backends.postgres package
	Submodules
	boardinghouse.backends.postgres.base module

	boardinghouse.backends.postgres.schema module

	Module contents

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.backends package

boardinghouse.backends.postgres package

Submodules

	boardinghouse.backends.postgres.base module

	boardinghouse.backends.postgres.schema module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.backends package

 	boardinghouse.backends.postgres package

boardinghouse.backends.postgres.base module

	
class boardinghouse.backends.postgres.base.DatabaseWrapper(*args, **kwargs)[source]

	Bases: django.db.backends.postgresql.base.DatabaseWrapper

This is a simple subclass of the Postrges DatabaseWrapper,
but using our new DatabaseSchemaEditor class.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.backends package

 	boardinghouse.backends.postgres package

boardinghouse.backends.postgres.schema module

	
boardinghouse.backends.postgres.schema.get_constraints(cursor, table_name)[source]

	Retrieves any constraints or keys (unique, pk, fk, check, index) across one or more columns.

This is copied (almost) verbatim from django, but replaces the use of “public” with “public” + “__template__”.

We assume that this will find the relevant constraint, and rely on our operations keeping the others in sync.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.contrib package

Subpackages

	boardinghouse.contrib.demo package
	Module contents

	boardinghouse.contrib.invite package
	Subpackages
	boardinghouse.contrib.invite.migrations package
	Submodules
	boardinghouse.contrib.invite.migrations.0001_initial module

	Module contents

	Submodules
	boardinghouse.contrib.invite.admin module

	boardinghouse.contrib.invite.forms module

	boardinghouse.contrib.invite.models module

	boardinghouse.contrib.invite.urls module

	boardinghouse.contrib.invite.views module

	Module contents

	boardinghouse.contrib.template package
	Subpackages
	boardinghouse.contrib.template.migrations package
	Submodules
	boardinghouse.contrib.template.migrations.0001_initial module

	Module contents

	Submodules
	boardinghouse.contrib.template.admin module

	boardinghouse.contrib.template.models module

	Module contents

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

boardinghouse.contrib.demo package

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

boardinghouse.contrib.invite package

Subpackages

	boardinghouse.contrib.invite.migrations package
	Submodules
	boardinghouse.contrib.invite.migrations.0001_initial module

	Module contents

Submodules

	boardinghouse.contrib.invite.admin module

	boardinghouse.contrib.invite.forms module

	boardinghouse.contrib.invite.models module

	boardinghouse.contrib.invite.urls module

	boardinghouse.contrib.invite.views module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.migrations package

Submodules

	boardinghouse.contrib.invite.migrations.0001_initial module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.admin module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.forms module

	
class boardinghouse.contrib.invite.forms.AcceptForm(*args, **kwargs)[source]

	Bases: django.forms.models.ModelForm

A form that can be used to accept an invitation to a schema.

	
class boardinghouse.contrib.invite.forms.InvitePersonForm(*args, **kwargs)[source]

	Bases: django.forms.models.ModelForm

A form that can be used to create a new invitation for a person
to a schema.

This will only allow you to invite someone to the current schema.

It will automatically generate a redemption code, that will be a
part of the url the user needs to click on in order to accept or
deny the invitation.

The message will be emailed.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.models module

	
class boardinghouse.contrib.invite.models.Invitation(id, email, sender, message, schema, redemption_code, created_at, accepted_at, declined_at, accepted_by)[source]

	Bases: boardinghouse.base.SharedSchemaModel

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.urls module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.invite package

boardinghouse.contrib.invite.views module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

boardinghouse.contrib.template package

Subpackages

	boardinghouse.contrib.template.migrations package
	Submodules
	boardinghouse.contrib.template.migrations.0001_initial module

	Module contents

Submodules

	boardinghouse.contrib.template.admin module

	boardinghouse.contrib.template.models module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.template package

boardinghouse.contrib.template.migrations package

Submodules

	boardinghouse.contrib.template.migrations.0001_initial module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.template package

boardinghouse.contrib.template.admin module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.contrib package

 	boardinghouse.contrib.template package

boardinghouse.contrib.template.models module

	
class boardinghouse.contrib.template.models.TemplateSchema(*args, **kwargs)[source]

	Bases: boardinghouse.base.SharedSchemaMixin, django.db.models.base.Model

A boardinghouse.contrib.template.models.TemplateSchema

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.management package

Subpackages

	boardinghouse.management.commands package
	Submodules
	boardinghouse.management.commands.dumpdata module

	boardinghouse.management.commands.flush module

	boardinghouse.management.commands.loaddata module

	boardinghouse.management.commands.migrate module

	Module contents

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.management package

boardinghouse.management.commands package

Submodules

	boardinghouse.management.commands.dumpdata module

	boardinghouse.management.commands.flush module

	boardinghouse.management.commands.loaddata module

	boardinghouse.management.commands.migrate module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.management package

 	boardinghouse.management.commands package

boardinghouse.management.commands.dumpdata module

boardinghouse.management.commands.dumpdata

Replaces the dumpdata command.

If the --schema option is supplied, that schema is used for the
source of the data. If it is not supplied, then the __template__
schema will be used (which will not contain any data).

If any models are supplied as arguments (using the app_label.model_name
notation) that are not shared models, it is an error to fail to pass a schema.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.management package

 	boardinghouse.management.commands package

boardinghouse.management.commands.flush module

boardinghouse.management.commands.flush

If django 1.7 or greater is installed, wrap the included flush command
to ensure:

	the clone_schema function is installed into the database.

	the __template__ schema is created.

	the search path to public,__template__, which is a special case
used only during DDL statements.

	when the command is complete, all currently existing schemata in the
SCHEMA_MODEL table exist as schemata in the database.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.management package

 	boardinghouse.management.commands package

boardinghouse.management.commands.loaddata module

boardinghouse.management.commands.loaddata

This replaces the loaddata command with one that takes a new
option: --schema. This is required when non-shared-models are
included in the file(s) to be loaded, and the schema with this name
will be used as a target.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.management package

 	boardinghouse.management.commands package

boardinghouse.management.commands.migrate module

boardinghouse.management.commands.migrate

We wrap the django migrate command to ensure the search path is set to
public,__template__, which is a special case used only during DDL
statements.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.migrations package

Submodules

	boardinghouse.migrations.0001_initial module

	boardinghouse.migrations.0002_patch_admin module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.migrations package

boardinghouse.migrations.0001_initial module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.migrations package

boardinghouse.migrations.0002_patch_admin module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.templatetags package

Submodules

	boardinghouse.templatetags.boardinghouse module

Module contents

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

 	boardinghouse.templatetags package

boardinghouse.templatetags.boardinghouse module

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.admin module

	
class boardinghouse.admin.SchemaAdmin(model, admin_site)[source]

	Bases: django.contrib.admin.options.ModelAdmin

The ModelAdmin for the schema class should protect the schema
field, but only once the object has been saved.

	
get_readonly_fields(request, obj=None)[source]

	Prevents schema from being editable once created.

	
boardinghouse.admin.get_inline_instances(self, request, obj=None)[source]

	Prevent the display of non-shared inline objects associated
with _every_ model if no schema is currently selected.

If we don’t patch this, then a DatabaseError will occur because
the tables could not be found.

	
boardinghouse.admin.schemata(obj)[source]

	Useful function for adding schemata representation to admin
list view.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.apps module

	
class boardinghouse.apps.BoardingHouseConfig(app_name, app_module)[source]

	Bases: django.apps.config.AppConfig

Default AppConfig for django-boardinghouse.

	
boardinghouse.apps.check_db_backend(app_configs=None, **kwargs)[source]

	Ensure all database backends are using a backend that we work with.

	
boardinghouse.apps.check_session_middleware_installed(app_configs=None, **kwargs)[source]

	Ensure that SessionMiddleware is installed.

Without it, we would be unable to store which schema should
be active for a given request.

	
boardinghouse.apps.inject_required_settings()[source]

	Inject our middleware and context processor.

boardinghouse.middleware.SchemaMiddleware
boardinghouse.context_processors.schemata

	
boardinghouse.apps.load_app_settings()[source]

	Load up the app settings defaults.

See boardinghouse.settings

	
boardinghouse.apps.monkey_patch_user()[source]

	Add a property to the defined user model that gives us the visible schemata.

Add properties to django.contrib.auth.models.AnonymousUser that
return empty querysets for visible and all schemata.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.base module

	
class boardinghouse.base.MultiSchemaManager[source]

	Bases: boardinghouse.base.MultiSchemaMixin, django.db.models.manager.Manager

A Manager that allows for fetching objects from multiple schemata
in the one request.

	
class boardinghouse.base.MultiSchemaMixin[source]

	Bases: object

A mixin that allows for fetching objects from multiple
schemata in the one request.

Consider this experimental.

Note

You probably don’t want want this on your QuerySet, just
on your Manager.

	
from_schemata(*schemata)[source]

	Perform these queries across several schemata.

	
class boardinghouse.base.SharedSchemaMixin[source]

	Bases: object

A Mixin that ensures a subclass will be available in the
shared schema.

	
class boardinghouse.base.SharedSchemaModel(*args, **kwargs)[source]

	Bases: boardinghouse.base.SharedSchemaMixin, django.db.models.base.Model

A Base class for models that should be in the shared schema.

You should inherit from this class if your model _must_ be in
the shared schema. Just setting the _is_shared_model attribute
will not be picked up for migrations.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.context_processors module

	
boardinghouse.context_processors.schemata(request)[source]

	A Django context_processor that provides access to the
logged-in user’s visible schemata, and selected schema.

Adds the following variables to the context:

schemata: all available schemata this user has

selected_schema: the currenly selected schema name

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.middleware module

	
class boardinghouse.middleware.SchemaMiddleware[source]

	Middleware to set the postgres schema for the current request’s session.

The schema that will be used is stored in the session. A lookup will
occur (but this could easily be cached) on each request.

There are three ways to change the schema as part of a request.

	Request a page with a querystring containg a __schema value:

https://example.com/page/?__schema=<schema-name>

The schema will be changed (or cleared, if this user cannot view
that schema), and the page will be re-loaded (if it was a GET). This
method of changing schema allows you to have a link that changes the
current schema and then loads the data with the new schema active.

It is used within the admin for having a link to data from an
arbitrary schema in the LogEntry history.

This type of schema change request should not be done with a POST
request.

	Add a request header:

X-Change-Schema: <schema-name>

This will not cause a redirect to the same page without query string. It
is the only way to do a schema change within a POST request, but could
be used for any request type.

	Use a specific request:

https://example.com/__change_schema__/<schema-name>/

This is designed to be used from AJAX requests, or as part of
an API call, as it returns a status code (and a short message)
about the schema change request. If you were storing local data,
and did one of these, you are probably going to have to invalidate
much of that.

You could also come up with other methods.

	
process_exception(request, exception)[source]

	In the case a request returned a DatabaseError, and there was no
schema set on request.session, then look and see if the error
that was provided by the database may indicate that we should have
been looking inside a schema.

In the case we had a TemplateSchemaActivation exception,
then we want to remove that key from the session.

	
boardinghouse.middleware.change_schema(request, schema)[source]

	Change the schema for the current request’s session.

Note this does not actually _activate_ the schema, it only stores
the schema name in the current request’s session.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.models module

	
class boardinghouse.models.AbstractSchema(*args, **kwargs)[source]

	Bases: boardinghouse.base.SharedSchemaMixin, django.db.models.base.Model

The Schema model provides an abstraction for a Postgres schema.

It will take care of creating a cloned copy of the template_schema
when it is created, and also has the ability to activate and deactivate
itself (at the start and end of the request cycle would be a good plan).

	
class boardinghouse.models.Schema(*args, **kwargs)[source]

	Bases: boardinghouse.models.AbstractSchema

The default schema model.

Unless you set settings.BOARDINGHOUSE_SCHEMA_MODEL, this model will
be used for storing the schema objects.

	
boardinghouse.models.visible_schemata(user)[source]

	The list of visible schemata for the given user.

This is fetched from the cache, if the value is available. There are
signal listeners that automatically invalidate the cache when conditions
that are detected that would indicate this value has changed.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.operations module

	
class boardinghouse.operations.AddField(*args, **kwargs)[source]

	Bases: django.db.migrations.operations.fields.AddField

Allow adding a field to a model from a different application.

This enables us to add the field to contrib.admin.LogEntry that
stores the schema for an aware object.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.schema module

	
exception boardinghouse.schema.Forbidden[source]

	Bases: exceptions.Exception

An exception that will be raised when an attempt to activate a non-valid
schema is made.

	
boardinghouse.schema.REQUIRED_SHARED_MODELS = ['auth.user', 'auth.permission', 'auth.group', 'boardinghouse.schema', 'sites.site', 'sessions.session', 'contenttypes.contenttype', 'admin.logentry', 'migrations.migration', <function <lambda> at 0x7fb42b3a9ed8>, <function <lambda> at 0x7fb42b3aba28>]

	These models are required to be shared by the system.

	
exception boardinghouse.schema.TemplateSchemaActivation(*args, **kwargs)[source]

	Bases: boardinghouse.schema.Forbidden

An exception that will be raised when a user attempts to activate
the __template__ schema.

	
boardinghouse.schema.activate_schema(schema_name)[source]

	Activate the current schema: this will execute, in the database
connection, something like:

SET search_path TO "foo",public;

It sends signals before and after that the schema will be, and was
activated.

Must be passed a string: the internal name of the schema to activate.

	
boardinghouse.schema.activate_template_schema()[source]

	Activate the template schema.

You probably don’t want to do this. Sometimes you do (like for instance
to apply migrations).

	
boardinghouse.schema.deactivate_schema(schema=None)[source]

	Deactivate the provided (or current) schema.

	
boardinghouse.schema.get_active_schema()[source]

	Get the (internal) name of the currently active schema.

	
boardinghouse.schema.get_active_schema_name()[source]

	Get the currently active schema.

This requires a database query to ask it what the current search_path is.

	
boardinghouse.schema.get_active_schemata()[source]

	Get a (cached) list of all currently active schemata.

	
boardinghouse.schema.get_all_schemata()[source]

	Get a (cached) list of all schemata.

	
boardinghouse.schema.get_schema_model()[source]

	Return the class that is currently set as the schema model.

	
boardinghouse.schema.is_shared_model(model)[source]

	Is the model (or instance of a model) one that should be in the
public/shared schema?

	
boardinghouse.schema.is_shared_table(table, apps=<django.apps.registry.Apps object>)[source]

	Is the model from the provided database table name shared?

We may need to look and see if we can work out which models
this table joins.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.settings module

	
boardinghouse.settings.BOARDINGHOUSE_SCHEMA_MODEL = 'boardinghouse.Schema'

	The model that will store the actual schema objects. This should be a
subclass of boardinghouse.models.AbstractSchema, or expose the
same methods.

	
boardinghouse.settings.PRIVATE_MODELS = []

	Overrides for models that should be place in each schema.

This enables us to do magic like have the m2m join table for a pair
of shared models be schema-aware.

Can we annotate a ForeignKey field, or perhaps do something in the
Model.Meta to set this?

Perhaps we could have a SchemaAwareManyToManyField()...

	
boardinghouse.settings.PUBLIC_SCHEMA = 'public'

	The name of the public schema. The default should work for all cases,
other than where you know you need to change it.

	
boardinghouse.settings.SHARED_MODELS = []

	Models that should be in the public/shared schema,
rather than in each tenant’s schema.

Note that some models are always shared, which you
can see in boardinghouse.schema.REQUIRED_SHARED_MODELS

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-boardinghouse 0.3.5 documentation

 	Code

 	boardinghouse package

boardinghouse.signals module

Signals that are fired as part of the django-boardinghouse project.

	
boardinghouse.signals.schema_created

	Sent when a new schema object has been created in the database. Accepts a
single argument, the (internal) name of the schema.

	
boardinghouse.signals.schema_pre_activate

	Sent just before a schema will be activated. May be used to abort this by
throwing an exception.

	
boardinghouse.signals.schema_post_activate

	Sent immediately after a schema has been activated.

	
boardinghouse.signals.session_requesting_schema_change

	Sent when a user-session has requested (and is, according to default rules,
allowed to change to this schema). May be used to prevent the change, by
throwing an exception.

	
boardinghouse.signals.session_schema_changed

	Sent when a user-session has changed it’s schema.

	
boardinghouse.signals.create_schema(sender, instance, created, **kwargs)[source]

	Actually create the schema in the database.

We do this in a signal handler instead of .save() so we can catch
those created using raw methods.

	
boardinghouse.signals.inject_schema_attribute(sender, instance, **kwargs)[source]

	A signal listener that injects the current schema on the object
just after it is instantiated.

You may use this in conjunction with MultiSchemaMixin, it will
respect any value that has already been set on the instance.

	
boardinghouse.signals.invalidate_all_caches(sender, **kwargs)[source]

	Invalidate all schemata caches. Not entirely sure this one works.

	
boardinghouse.signals.invalidate_all_user_caches(sender, **kwargs)[source]

	A signal listener that invalidates all schemata caches for all users
who have access to the sender instance (schema).

	
boardinghouse.signals.invalidate_cache(sender, **kwargs)[source]

	A signal listener designed to invalidate the cache of a single
user’s visible schemata items.

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-boardinghouse 0.3.5 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 boardinghouse	

 	
 	
 boardinghouse.admin	

 	
 	
 boardinghouse.apps	

 	
 	
 boardinghouse.backends	

 	
 	
 boardinghouse.backends.postgres	

 	
 	
 boardinghouse.backends.postgres.base	

 	
 	
 boardinghouse.backends.postgres.schema	

 	
 	
 boardinghouse.base	

 	
 	
 boardinghouse.context_processors	

 	
 	
 boardinghouse.contrib	

 	
 	
 boardinghouse.contrib.demo	

 	
 	
 boardinghouse.contrib.invite	

 	
 	
 boardinghouse.contrib.invite.admin	

 	
 	
 boardinghouse.contrib.invite.forms	

 	
 	
 boardinghouse.contrib.invite.migrations	

 	
 	
 boardinghouse.contrib.invite.migrations.0001_initial	

 	
 	
 boardinghouse.contrib.invite.models	

 	
 	
 boardinghouse.contrib.invite.urls	

 	
 	
 boardinghouse.contrib.invite.views	

 	
 	
 boardinghouse.contrib.template	

 	
 	
 boardinghouse.contrib.template.admin	

 	
 	
 boardinghouse.contrib.template.migrations	

 	
 	
 boardinghouse.contrib.template.migrations.0001_initial	

 	
 	
 boardinghouse.contrib.template.models	

 	
 	
 boardinghouse.management	

 	
 	
 boardinghouse.management.commands	

 	
 	
 boardinghouse.management.commands.dumpdata	

 	
 	
 boardinghouse.management.commands.flush	

 	
 	
 boardinghouse.management.commands.loaddata	

 	
 	
 boardinghouse.management.commands.migrate	

 	
 	
 boardinghouse.middleware	

 	
 	
 boardinghouse.migrations	

 	
 	
 boardinghouse.migrations.0001_initial	

 	
 	
 boardinghouse.migrations.0002_patch_admin	

 	
 	
 boardinghouse.models	

 	
 	
 boardinghouse.operations	

 	
 	
 boardinghouse.schema	

 	
 	
 boardinghouse.settings	

 	
 	
 boardinghouse.signals	

 	
 	
 boardinghouse.templatetags	

 	
 	
 boardinghouse.templatetags.boardinghouse	

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-boardinghouse 0.3.5 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | V

A

 	

 	AbstractSchema (class in boardinghouse.models)

 	AcceptForm (class in boardinghouse.contrib.invite.forms)

 	activate_schema() (in module boardinghouse.schema)

 	

 	activate_template_schema() (in module boardinghouse.schema)

 	AddField (class in boardinghouse.operations)

B

 	

 	boardinghouse (module)

 	boardinghouse.admin (module)

 	boardinghouse.apps (module)

 	boardinghouse.backends (module)

 	boardinghouse.backends.postgres (module)

 	boardinghouse.backends.postgres.base (module)

 	boardinghouse.backends.postgres.schema (module)

 	boardinghouse.base (module)

 	boardinghouse.context_processors (module)

 	boardinghouse.contrib (module)

 	boardinghouse.contrib.demo (module)

 	boardinghouse.contrib.invite (module)

 	boardinghouse.contrib.invite.admin (module)

 	boardinghouse.contrib.invite.forms (module)

 	boardinghouse.contrib.invite.migrations (module)

 	boardinghouse.contrib.invite.migrations.0001_initial (module)

 	boardinghouse.contrib.invite.models (module)

 	boardinghouse.contrib.invite.urls (module)

 	boardinghouse.contrib.invite.views (module)

 	boardinghouse.contrib.template (module)

 	boardinghouse.contrib.template.admin (module)

 	boardinghouse.contrib.template.migrations (module)

 	

 	boardinghouse.contrib.template.migrations.0001_initial (module)

 	boardinghouse.contrib.template.models (module)

 	boardinghouse.management (module)

 	boardinghouse.management.commands (module)

 	boardinghouse.management.commands.dumpdata (module)

 	boardinghouse.management.commands.flush (module)

 	boardinghouse.management.commands.loaddata (module)

 	boardinghouse.management.commands.migrate (module)

 	boardinghouse.middleware (module)

 	boardinghouse.migrations (module)

 	boardinghouse.migrations.0001_initial (module)

 	boardinghouse.migrations.0002_patch_admin (module)

 	boardinghouse.models (module)

 	boardinghouse.operations (module)

 	boardinghouse.schema (module)

 	boardinghouse.settings (module)

 	boardinghouse.signals (module)

 	boardinghouse.templatetags (module)

 	boardinghouse.templatetags.boardinghouse (module)

 	BOARDINGHOUSE_SCHEMA_MODEL (in module boardinghouse.settings)

 	BoardingHouseConfig (class in boardinghouse.apps)

C

 	

 	change_schema() (in module boardinghouse.middleware)

 	check_db_backend() (in module boardinghouse.apps)

 	

 	check_session_middleware_installed() (in module boardinghouse.apps)

 	create_schema() (in module boardinghouse.signals)

D

 	

 	DatabaseWrapper (class in boardinghouse.backends.postgres.base)

 	

 	deactivate_schema() (in module boardinghouse.schema)

F

 	

 	Forbidden

 	

 	from_schemata() (boardinghouse.base.MultiSchemaMixin method)

G

 	

 	get_active_schema() (in module boardinghouse.schema)

 	get_active_schema_name() (in module boardinghouse.schema)

 	get_active_schemata() (in module boardinghouse.schema)

 	get_all_schemata() (in module boardinghouse.schema)

 	

 	get_constraints() (in module boardinghouse.backends.postgres.schema)

 	get_inline_instances() (in module boardinghouse.admin)

 	get_readonly_fields() (boardinghouse.admin.SchemaAdmin method)

 	get_schema_model() (in module boardinghouse.schema)

I

 	

 	inject_required_settings() (in module boardinghouse.apps)

 	inject_schema_attribute() (in module boardinghouse.signals)

 	invalidate_all_caches() (in module boardinghouse.signals)

 	invalidate_all_user_caches() (in module boardinghouse.signals)

 	invalidate_cache() (in module boardinghouse.signals)

 	

 	Invitation (class in boardinghouse.contrib.invite.models)

 	InvitePersonForm (class in boardinghouse.contrib.invite.forms)

 	is_shared_model() (in module boardinghouse.schema)

 	is_shared_table() (in module boardinghouse.schema)

L

 	

 	load_app_settings() (in module boardinghouse.apps)

M

 	

 	monkey_patch_user() (in module boardinghouse.apps)

 	MultiSchemaManager (class in boardinghouse.base)

 	

 	MultiSchemaMixin (class in boardinghouse.base)

P

 	

 	PRIVATE_MODELS (in module boardinghouse.settings)

 	process_exception() (boardinghouse.middleware.SchemaMiddleware method)

 	

 	PUBLIC_SCHEMA (in module boardinghouse.settings)

R

 	

 	REQUIRED_SHARED_MODELS (in module boardinghouse.schema)

S

 	

 	Schema (class in boardinghouse.models)

 	schema_created (in module boardinghouse.signals)

 	schema_post_activate (in module boardinghouse.signals)

 	schema_pre_activate (in module boardinghouse.signals)

 	SchemaAdmin (class in boardinghouse.admin)

 	SchemaMiddleware (class in boardinghouse.middleware)

 	

 	schemata() (in module boardinghouse.admin)

 	

 	(in module boardinghouse.context_processors)

 	session_requesting_schema_change (in module boardinghouse.signals)

 	session_schema_changed (in module boardinghouse.signals)

 	SHARED_MODELS (in module boardinghouse.settings)

 	SharedSchemaMixin (class in boardinghouse.base)

 	SharedSchemaModel (class in boardinghouse.base)

T

 	

 	TemplateSchema (class in boardinghouse.contrib.template.models)

 	

 	TemplateSchemaActivation

V

 	

 	visible_schemata() (in module boardinghouse.models)

 Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_badges.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 [image: Build status]
 [https://codeship.com/projects/27653][image: Coverage status]
 [https://coveralls.io/bitbucket/schinckel/django-boardinghouse?branch=default][image: Dependencies status]
 [https://requires.io/bitbucket/schinckel/django-boardinghouse/requirements.svg/?branch=default][image: Documentation Status]
 [https://readthedocs.org/projects/django-boardinghouse/][image: PyPI release version]
 [https://pypi.python.org/pypi/django-boardinghouse][image: Supported python versions][image: Download count][image: Wheel available?]

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 All modules for which code is available

		boardinghouse.admin

		boardinghouse.apps

		boardinghouse.backends.postgres.base

		boardinghouse.backends.postgres.schema

		boardinghouse.base

		boardinghouse.context_processors

		boardinghouse.contrib.invite.forms

		boardinghouse.contrib.invite.models

		boardinghouse.contrib.template.models

		boardinghouse.middleware

		boardinghouse.models

		boardinghouse.operations

		boardinghouse.schema

		boardinghouse.signals

		django.dispatch.dispatcher

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/boardinghouse/middleware.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.middleware

from __future__ import unicode_literals

import logging
import re

from django.contrib import messages
from django.db import ProgrammingError
from django.http import HttpResponse, HttpResponseForbidden, HttpResponseRedirect
from django.shortcuts import redirect
from django.utils.translation import ugettext_lazy as _
from django.utils import six

from .schema import (
 TemplateSchemaActivation, Forbidden,
 get_schema_model,
 activate_schema, deactivate_schema,
)
from .signals import session_requesting_schema_change, session_schema_changed

logger = logging.getLogger('boardinghouse.middleware')

[docs]def change_schema(request, schema):
 """
 Change the schema for the current request's session.

 Note this does not actually _activate_ the schema, it only stores
 the schema name in the current request's session.
 """
 session = request.session
 user = request.user

 # Allow clearing out the current schema.
 if not schema:
 session.pop('schema', None)
 return

 # Anonymous users may not select a schema.
 # Should this be selectable?
 if user.is_anonymous():
 session.pop('schema', None)
 raise Forbidden()

 # We actually want the schema name, so we can see if we
 # don't actually need to change the schema at all (if the
 # session is already set, then we assume that it's all good)
 if isinstance(schema, six.string_types):
 schema_name = schema
 else:
 schema_name = schema.schema

 # Don't allow anyone, even superusers, to select the template schema.
 if schema_name == '__template__':
 raise TemplateSchemaActivation()

 # If the schema is already set to this name for this session, then
 # we can just exit early, saving some db access.
 if schema_name == session.get('schema', None):
 return

 Schema = get_schema_model()

 if user.is_superuser or user.is_staff:
 # Just a sanity check: that the schema actually
 # exists at all, when the superuser attempts to set
 # the schema.
 if schema_name == schema:
 try:
 schema = Schema.objects.get(schema=schema_name)
 except Schema.DoesNotExist:
 raise Forbidden()
 else:
 # If we were passed in a schema object, rather than a string,
 # then we can check to see if that schema is active before
 # having to hit the database.
 if isinstance(schema, Schema):
 # I'm not sure that it's logically possible to get this
 # line to return True - we only pass in data from user.visible_schemata,
 # which excludes inactives.
 if not schema.is_active:
 raise Forbidden()
 # Ensure that this user has access to this schema,
 # and that this schema is active. We can do this using the
 # cache, which prevents hitting the database.
 visible_schemata = [schema.schema for schema in user.visible_schemata]
 if schema_name not in visible_schemata:
 raise Forbidden()

 # Allow 3rd-party applications to listen for an attempt to change
 # the schema for a user/session, and prevent it from occurring by
 # raising an exception. We will just pass that exception up the
 # call stack.
 session_requesting_schema_change.send(
 sender=request,
 schema=schema_name,
 user=request.user,
 session=request.session,
)
 # Actually set the schema on the session.
 session['schema'] = schema_name
 # Allow 3rd-party applications to listen for a change, and act upon
 # it accordingly.
 session_schema_changed.send(
 sender=request,
 schema=schema_name,
 user=request.user,
 session=request.session,
)

[docs]class SchemaMiddleware:
 """
 Middleware to set the postgres schema for the current request's session.

 The schema that will be used is stored in the session. A lookup will
 occur (but this could easily be cached) on each request.

 There are three ways to change the schema as part of a request.

 1. Request a page with a querystring containg a ``__schema`` value::

 https://example.com/page/?__schema=<schema-name>

 The schema will be changed (or cleared, if this user cannot view
 that schema), and the page will be re-loaded (if it was a GET). This
 method of changing schema allows you to have a link that changes the
 current schema and then loads the data with the new schema active.

 It is used within the admin for having a link to data from an
 arbitrary schema in the ``LogEntry`` history.

 This type of schema change request should not be done with a POST
 request.

 2. Add a request header::

 X-Change-Schema: <schema-name>

 This will not cause a redirect to the same page without query string. It
 is the only way to do a schema change within a POST request, but could
 be used for any request type.

 3. Use a specific request::

 https://example.com/__change_schema__/<schema-name>/

 This is designed to be used from AJAX requests, or as part of
 an API call, as it returns a status code (and a short message)
 about the schema change request. If you were storing local data,
 and did one of these, you are probably going to have to invalidate
 much of that.

 You could also come up with other methods.

 """
 def process_request(self, request):
 FORBIDDEN = HttpResponseForbidden(_('You may not select that schema'))
 # Ways of changing the schema.
 # 1. URL /__change_schema__/<name>/
 # This will return a whole page.
 # We don't need to activate, that happens on the next request.
 if request.path.startswith('/__change_schema__/'):
 schema = request.path.split('/')[2]
 try:
 change_schema(request, schema)
 except Forbidden:
 return FORBIDDEN

 if 'schema' in request.session:
 response = _('Schema changed to %s') % request.session['schema']
 else:
 response = _('Schema deselected')

 return HttpResponse(response)

 # 2. GET querystring ...?__schema=<name>
 # This will change the query, and then redirect to the page
 # without the schema name included.
 elif request.GET.get('__schema', None) is not None:
 schema = request.GET['__schema']
 try:
 change_schema(request, schema)
 except Forbidden:
 return FORBIDDEN

 data = request.GET.copy()
 data.pop('__schema')

 if request.method == "GET":
 # redirect so we strip the schema out of the querystring.
 if data:
 return redirect(request.path + '?' + data.urlencode())
 return redirect(request.path)

 # method == 'POST' or other
 request.GET = data

 # 3. Header "X-Change-Schema: <name>"
 elif 'HTTP_X_CHANGE_SCHEMA' in request.META:
 schema = request.META['HTTP_X_CHANGE_SCHEMA']
 try:
 change_schema(request, schema)
 except Forbidden:
 return FORBIDDEN

 elif 'schema' not in request.session and len(request.user.visible_schemata) == 1:
 # Can we not require a db hit each request here?
 change_schema(request, request.user.visible_schemata[0])

 if 'schema' in request.session:
 activate_schema(request.session['schema'])
 else:
 deactivate_schema()

[docs] def process_exception(self, request, exception):
 """
 In the case a request returned a DatabaseError, and there was no
 schema set on ``request.session``, then look and see if the error
 that was provided by the database may indicate that we should have
 been looking inside a schema.

 In the case we had a :class:`TemplateSchemaActivation` exception,
 then we want to remove that key from the session.
 """
 if isinstance(exception, ProgrammingError) and not request.session.get('schema'):
 if re.search('relation ".*" does not exist', exception.args[0]):
 # I'm not sure if this should be done or not, but it does
 # fail without the if statement from django 1.8+
 # if not transaction.get_autocommit():
 # transaction.rollback()

 # Should we return an error, or redirect? When should we
 # do one or the other? For an API, we would want an error
 # but for a regular user, a redirect may be better.

 # Can we see if there is already a pending message for this
 # request that has the same content as us?
 messages.error(request,
 _("You must select a schema to access that resource"),
 fail_silently=True
)
 return HttpResponseRedirect('..')
 # I'm not sure we ever really hit this one, but it's worth keeping
 # here just in case we've missed something.
 if isinstance(exception, TemplateSchemaActivation):
 request.session.pop('schema', None)
 return HttpResponseForbidden(_('You may not select that schema'))

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/context_processors.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.context_processors

from __future__ import unicode_literals

from .schema import get_schema_model

[docs]def schemata(request):
 """
 A Django context_processor that provides access to the
 logged-in user's visible schemata, and selected schema.

 Adds the following variables to the context:

 `schemata`: all available schemata this user has

 `selected_schema`: the currenly selected schema name

 """
 if request.user.is_anonymous():
 return {}

 if request.user.is_staff or request.user.is_superuser:
 available_schemata = get_schema_model().objects.all()
 else:
 available_schemata = request.user.visible_schemata

 return {
 'schemata': available_schemata,
 'selected_schema': request.session.get('schema', None)
 }

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/schema.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.schema

import logging
import inspect
import threading

from django.apps import apps
from django.conf import settings
from django.core.cache import cache
from django.db import connection
from django.db.migrations.operations.base import Operation
from django.utils.translation import lazy

LOGGER = logging.getLogger(__name__)
LOGGER.addHandler(logging.NullHandler())

_thread_locals = threading.local()

[docs]class Forbidden(Exception):
 """
 An exception that will be raised when an attempt to activate a non-valid
 schema is made.
 """

[docs]class TemplateSchemaActivation(Forbidden):
 """
 An exception that will be raised when a user attempts to activate
 the __template__ schema.
 """
 def __init__(self, *args, **kwargs):
 super(TemplateSchemaActivation, self).__init__(
 'Activating template schema forbidden.', *args, **kwargs
)

[docs]def get_schema_model():
 """
 Return the class that is currently set as the schema model.
 """
 return apps.get_model(settings.BOARDINGHOUSE_SCHEMA_MODEL)

def _get_search_path():
 cursor = connection.cursor()
 cursor.execute('SELECT current_schema()')
 search_path = cursor.fetchone()[0]
 cursor.close()
 return search_path.split(',')

def _set_search_path(search_path):
 cursor = connection.cursor()
 cursor.execute('SET search_path TO %s,{}'.format(settings.PUBLIC_SCHEMA),
 [search_path])
 cursor.close()

def _schema_exists(schema_name, cursor=None):
 if cursor:
 cursor.execute('''SELECT schema_name
 FROM information_schema.schemata
 WHERE schema_name = %s''',
 [schema_name])
 return bool(cursor.fetchone())

 cursor = connection.cursor()
 try:
 return _schema_exists(schema_name, cursor)
 finally:
 cursor.close()

[docs]def get_active_schema_name():
 """
 Get the currently active schema.

 This requires a database query to ask it what the current `search_path` is.
 """
 active_schema = getattr(_thread_locals, 'schema', None)

 if not active_schema:
 reported_schema = _get_search_path()[0]

 if _get_schema(reported_schema):
 active_schema = reported_schema
 else:
 active_schema = None

 _thread_locals.schema = active_schema

 return active_schema

[docs]def get_active_schema():
 """
 Get the (internal) name of the currently active schema.
 """
 return _get_schema(get_active_schema_name())

[docs]def get_active_schemata():
 """
 Get a (cached) list of all currently active schemata.
 """
 schemata = cache.get('active-schemata')
 if schemata is None:
 schemata = get_schema_model().objects.active()
 cache.set('active-schemata', schemata)
 return schemata

[docs]def get_all_schemata():
 """
 Get a (cached) list of all schemata.
 """
 schemata = cache.get('all-schemata')
 if schemata is None:
 schemata = get_schema_model().objects.all()
 cache.set('all-schemata', schemata)
 return schemata

def _get_schema(schema_name):
 """
 Get the matching active schema object for the given name,
 if it exists.
 """
 if not schema_name:
 return
 for schema in get_active_schemata():
 if schema_name == schema.schema or schema_name == schema:
 return schema

[docs]def activate_schema(schema_name):
 """
 Activate the current schema: this will execute, in the database
 connection, something like:

 .. code:: sql

 SET search_path TO "foo",public;

 It sends signals before and after that the schema will be, and was
 activated.

 Must be passed a string: the internal name of the schema to activate.
 """
 from .signals import schema_pre_activate, schema_post_activate

 if schema_name == '__template__':
 raise TemplateSchemaActivation()

 schema_pre_activate.send(sender=None, schema_name=schema_name)
 _set_search_path(schema_name)
 schema_post_activate.send(sender=None, schema_name=schema_name)
 _thread_locals.schema = schema_name

[docs]def activate_template_schema():
 """
 Activate the template schema.

 You probably don't want to do this. Sometimes you do (like for instance
 to apply migrations).
 """
 from .signals import schema_pre_activate, schema_post_activate

 _thread_locals.schema = None
 schema_name = '__template__'
 schema_pre_activate.send(sender=None, schema_name=schema_name)
 _set_search_path(schema_name)
 schema_post_activate.send(sender=None, schema_name=schema_name)

def get_template_schema():
 return get_schema_model()('__template__')

[docs]def deactivate_schema(schema=None):
 """
 Deactivate the provided (or current) schema.
 """
 from .signals import schema_pre_activate, schema_post_activate

 cursor = connection.cursor()
 schema_pre_activate.send(sender=None, schema_name=None)
 cursor.execute('SET search_path TO "$user",{}'.format(settings.PUBLIC_SCHEMA))
 schema_post_activate.send(sender=None, schema_name=None)
 _thread_locals.schema = None
 cursor.close()

#: These models are required to be shared by the system.
REQUIRED_SHARED_MODELS = [
 'auth.user',
 'auth.permission',
 'auth.group',
 'boardinghouse.schema',
 'sites.site',
 'sessions.session',
 'contenttypes.contenttype',
 'admin.logentry',
 'migrations.migration',
 # Maybe lazy() these? They only apply if the values for the settings.*
 # are not the defaults.
 lazy(lambda: settings.BOARDINGHOUSE_SCHEMA_MODEL),
 lazy(lambda: settings.AUTH_USER_MODEL),
]

REQUIRED_SHARED_TABLES = [
 'django_migrations',
]

def _is_join_model(model):
 """
 We define a model as a join model if all of it's
 fields are related fields (or it's primary key),
 and there is more than just one field.

 I am not 100% happy with this definition.
 """
 return all([
 (field.primary_key or field.rel)
 for field in model._meta.fields
]) and len(model._meta.fields) > 1

[docs]def is_shared_model(model):
 """
 Is the model (or instance of a model) one that should be in the
 public/shared schema?
 """
 if model._is_shared_model:
 return True

 app_model = '{m.app_label}.{m.model_name}'.format(m=model._meta).lower()

 # These should be case insensitive!

 if app_model in REQUIRED_SHARED_MODELS:
 return True

 if app_model in settings.SHARED_MODELS:
 return True

 # Sometimes, we want a join table to be private.
 if app_model in settings.PRIVATE_MODELS:
 return False

 # if all fields are auto or fk, then we are a join model,
 # and if all related objects are shared, then we must
 # also be shared, unless we were explicitly marked as private
 # above.
 if _is_join_model(model):
 return all([
 is_shared_model(field.rel.get_related_field().model)
 for field in model._meta.fields if field.rel
])

 return False

[docs]def is_shared_table(table, apps=apps):
 """
 Is the model from the provided database table name shared?

 We may need to look and see if we can work out which models
 this table joins.
 """
 if table in REQUIRED_SHARED_TABLES:
 return True

 # Get a mapping of all table names to models.
 models = apps.get_models()

 # If we are in a migration operation, we need to look in that for models.
 # We really only should be injecting ourselves if we find a frame that contains
 # a database_(forwards|backwards) function.
 for frame in inspect.stack():
 frame_locals = frame[0].f_locals
 if frame[3] == 'database_forwards' and all([
 local in frame_locals for local in ('from_state', 'to_state', 'schema_editor', 'self')
]) and isinstance(frame_locals['self'], Operation):
 # Should this be from_state, or to_state, or should we look in both?
 from_state = frame_locals['from_state']
 to_state = frame_locals['to_state']
 models = set()
 if to_state.apps:
 models = models.union(to_state.apps.get_models())
 if from_state.apps:
 models = models.union(from_state.apps.get_models())
 break

 table_map = dict([
 (x._meta.db_table, x) for x in models
 if not x._meta.proxy
])

 # If we have a match, see if that one is shared.
 if table in table_map:
 return is_shared_model(table_map[table])

 # It may be a join table.
 prefixes = [
 (db_table, model) for db_table, model in table_map.items()
 if table.startswith(db_table)
]

 if len(prefixes) == 1:
 db_table, model = prefixes[0]
 rel_model = model._meta.get_field(
 table.replace(db_table, '').lstrip('_')
).rel.get_related_field().model
 elif len(prefixes) == 0:
 # No matching models found.
 # Assume this is not a shared table...
 return False
 else:
 return is_shared_model(model)

 return is_shared_model(model) and is_shared_model(rel_model)

Internal helper functions.

def _schema_table_exists():
 table_name = get_schema_model()._meta.db_table
 cursor = connection.cursor()
 cursor.execute("SELECT * FROM information_schema.tables WHERE table_name = %s", [table_name])
 return bool(cursor.fetchone())

def _wrap_command(command):
 def inner(self, *args, **kwargs):
 cursor = connection.cursor()
 # In the case of create table statements, we want to make sure
 # they go to the public schema, but want reads to come from
 # __template__.
 cursor.execute('SET search_path TO {},__template__'.format(settings.PUBLIC_SCHEMA))
 command(self, *args, **kwargs)
 deactivate_schema()
 return inner

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/admin.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.admin

"""

"""
from __future__ import unicode_literals

from django.conf import settings
from django.contrib import admin
from django.contrib.admin.models import LogEntry
from django.db import models
from django.dispatch import receiver

from .models import Schema
from .schema import get_active_schema, is_shared_model, get_schema_model

[docs]class SchemaAdmin(admin.ModelAdmin):
 """
 The `ModelAdmin` for the schema class should protect the `schema`
 field, but only once the object has been saved.
 """
[docs] def get_readonly_fields(self, request, obj=None):
 """
 Prevents `schema` from being editable once created.
 """
 if obj is not None:
 return ('schema',)
 return ()

 filter_horizontal = ('users',)

We only want to install our SchemaAdmin if our schema model is the
one that is used: otherwise it's up to the project developer to
add it to the admin, if they want it.
if get_schema_model() == Schema:
 admin.site.register(Schema, SchemaAdmin)

[docs]def schemata(obj):
 """
 Useful function for adding schemata representation to admin
 list view.
 """
 return '
'.join([s.name for s in obj.schemata.all()])

schemata.allow_tags = True

[docs]def get_inline_instances(self, request, obj=None):
 """
 Prevent the display of non-shared inline objects associated
 with _every_ model if no schema is currently selected.

 If we don't patch this, then a ``DatabaseError`` will occur because
 the tables could not be found.
 """
 schema = get_active_schema()
 return [
 inline(self.model, self.admin_site) for inline in self.inlines
 if schema or is_shared_model(inline.model)
]

admin.ModelAdmin.get_inline_instances = get_inline_instances

if not getattr(LogEntry, 'object_schema', None):
 LogEntry.add_to_class(
 'object_schema',
 models.ForeignKey(settings.BOARDINGHOUSE_SCHEMA_MODEL, blank=True, null=True)
)

 @receiver(models.signals.pre_save, sender=LogEntry)
 def update_object_schema(sender, instance, **kwargs):
 obj = instance.get_edited_object()

 if not is_shared_model(obj):
 instance.object_schema_id = obj._schema

 get_admin_url = LogEntry.get_admin_url

 def get_admin_url_with_schema(self):
 url = get_admin_url(self)

 if self.object_schema_id and url:
 return '{}?__schema={}'.format(url, self.object_schema_id)

 return url

 LogEntry.get_admin_url = get_admin_url_with_schema

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/apps.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.apps

from __future__ import unicode_literals

from django.apps import AppConfig
from django.core.checks import register, Error

[docs]class BoardingHouseConfig(AppConfig):
 """
 Default AppConfig for django-boardinghouse.
 """
 name = 'boardinghouse'

 def ready(self):
 load_app_settings()
 inject_required_settings()
 monkey_patch_user()
 register_signals()

DB_ENGINES = ['boardinghouse.backends.postgres']

@register('settings')
[docs]def check_db_backend(app_configs=None, **kwargs):
 "Ensure all database backends are using a backend that we work with."
 from django.conf import settings
 errors = []

 for name, data in settings.DATABASES.items():
 if data['ENGINE'] not in DB_ENGINES:
 errors.append(Error(
 'DATABASES[%s][ENGINE] of %s is not a known backend.' % (
 name, data['ENGINE']
),
 hint="Try boardinghouse.backends.postgres",
 id='boardinghouse.E001',
))

 return errors

@register('settings')
[docs]def check_session_middleware_installed(app_configs=None, **kwargs):
 """Ensure that SessionMiddleware is installed.

 Without it, we would be unable to store which schema should
 be active for a given request.
 """
 from django.conf import settings
 for middleware in settings.MIDDLEWARE_CLASSES:
 if middleware.endswith('.SessionMiddleware'):
 return []

 return [Error(
 'It appears that no session middleware is installed.',
 hint="Add 'django.contrib.sessions.middleware.SessionMiddleware' to your MIDDLEWARE_CLASSES",
 id='boardinghouse.E002',
)]

[docs]def monkey_patch_user():
 """
 Add a property to the defined user model that gives us the visible schemata.

 Add properties to :class:`django.contrib.auth.models.AnonymousUser` that
 return empty querysets for visible and all schemata.
 """
 from django.contrib.auth import get_user_model, models
 from .schema import get_schema_model
 from .models import visible_schemata
 Schema = get_schema_model()
 User = get_user_model()
 if not getattr(User, 'visible_schemata', None):
 User.visible_schemata = property(visible_schemata)

 models.AnonymousUser.schemata = Schema.objects.none()
 models.AnonymousUser.visible_schemata = Schema.objects.none()

[docs]def load_app_settings():
 """
 Load up the app settings defaults.

 See :mod:`boardinghouse.settings`
 """
 from boardinghouse import settings as app_settings
 from django.conf import settings, global_settings

 for key in dir(app_settings):
 if key.isupper():
 value = getattr(app_settings, key)
 setattr(global_settings, key, value)
 if not hasattr(settings, key):
 setattr(settings, key, value)

[docs]def inject_required_settings():
 """Inject our middleware and context processor.

 :class:`boardinghouse.middleware.SchemaMiddleware`
 :class:`boardinghouse.context_processors.schemata`
 """
 from django.conf import settings

 MIDDLEWARE = 'boardinghouse.middleware.SchemaMiddleware'
 CONTEXT = 'boardinghouse.context_processors.schemata'

 if MIDDLEWARE not in settings.MIDDLEWARE_CLASSES:
 settings.MIDDLEWARE_CLASSES += type(settings.MIDDLEWARE_CLASSES)([MIDDLEWARE])

 if hasattr(settings, 'TEMPLATES'):
 for engine in settings.TEMPLATES:
 if 'OPTIONS' not in engine:
 engine['OPTIONS'] = {}
 engine['OPTIONS']['context_processors'] = [CONTEXT]

 if hasattr(settings, 'TEMPLATE_CONTEXT_PROCESSORS'):
 if CONTEXT not in settings.TEMPLATE_CONTEXT_PROCESSORS:
 settings.TEMPLATE_CONTEXT_PROCESSORS += type(settings.TEMPLATE_CONTEXT_PROCESSORS)([CONTEXT])

def register_signals():
 from django.db import models
 from boardinghouse import signals
 from .schema import get_schema_model

 Schema = get_schema_model()

 models.signals.post_save.connect(signals.create_schema,
 sender=Schema,
 weak=True,
 dispatch_uid='create-schema')

 models.signals.post_init.connect(signals.inject_schema_attribute,
 sender=None, weak=True)

 models.signals.m2m_changed.connect(signals.invalidate_cache,
 sender=Schema.users.through, weak=True)

 models.signals.post_save.connect(signals.invalidate_all_user_caches,
 sender=Schema, weak=True)

 models.signals.pre_migrate.connect(signals.invalidate_all_caches, weak=True)

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

code/boardinghouse.contrib.invite.migrations.0001_initial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-boardinghouse 0.3.5 documentation »

 		Code »

 		boardinghouse package »

 		boardinghouse.contrib package »

 		boardinghouse.contrib.invite package »

 		boardinghouse.contrib.invite.migrations package »

boardinghouse.contrib.invite.migrations.0001_initial module

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/contrib/invite/models.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.contrib.invite.models

import datetime
import uuid

from django.conf import settings
from django.db import models
from django.utils.translation import ugettext_lazy as _
from django.utils.timezone import now

Can't import into the class namespace: we need to do it at the module.

from boardinghouse.base import SharedSchemaModel

INVITATION_EXPIRY = getattr(settings, 'INVITATION_EXPIRY', datetime.timedelta(7))

class InvitationQuerySet(models.query.QuerySet):
 def not_handled(self):
 return self.filter(declined_at=None).filter(accepted_at=None)

 def pending(self):
 return self.not_handled().filter(
 created_at__gte=now() - INVITATION_EXPIRY
)

 def not_pending(self):
 # Any invitations that have expired, have been accepted or declined.
 return self.exclude(pk__in=self.pending())

 def expired(self):
 return self.not_handled().filter(
 created_at__lt=now() - INVITATION_EXPIRY
)

 def accepted(self):
 return self.exclude(accepted_at=None)

 def declined(self):
 return self.exclude(declined_at=None)

 def for_email(self, email):
 return self.filter(email=email)

[docs]class Invitation(SharedSchemaModel):
 email = models.EmailField(verbose_name=_('Email address'))
 sender = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='sent_invitations')
 message = models.TextField()
 schema = models.ForeignKey(settings.BOARDINGHOUSE_SCHEMA_MODEL, related_name='invitations')
 redemption_code = models.UUIDField(null=True, blank=True)

 created_at = models.DateTimeField(auto_now_add=True)
 # Can we ensure that at most one of these two is not null?
 accepted_at = models.DateTimeField(null=True, blank=True)
 declined_at = models.DateTimeField(null=True, blank=True)
 accepted_by = models.ForeignKey(settings.AUTH_USER_MODEL,
 related_name='accepted_invitations',
 null=True, blank=True)

 objects = InvitationQuerySet.as_manager()

 class Meta:
 ordering = ('created_at',)
 app_label = 'invite'

 def __unicode__(self):
 return '[%s] Invitation to %s from %s to join %s' % (
 unicode(self.status), self.email, self.sender, self.schema.name
)

 def save(self, *args, **kwargs):
 if not self.redeemed and not self.redemption_code:
 self.redemption_code = uuid.uuid4()
 return super(Invitation, self).save(*args, **kwargs)

 @property
 def redeemed(self):
 return self.accepted_at or self.declined_at

 @property
 def declined(self):
 return self.declined_at is not None

 @property
 def accepted(self):
 return self.accepted_at is not None

 @property
 def expired(self):
 return self.created_at < now() - INVITATION_EXPIRY

 @property
 def redeemable(self):
 return not (self.expired or self.redeemed)

 @property
 def status(self):
 if self.declined:
 return _('DECLINED')
 if self.accepted:
 return _('ACCEPTED')
 if self.expired:
 return _('EXPIRED')
 return _('PENDING')

 @property
 def expiry_date(self):
 return self.created_at + INVITATION_EXPIRY

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/signals.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.signals

"""
Signals that are fired as part of the django-boardinghouse project.

.. data:: schema_created

 Sent when a new schema object has been created in the database. Accepts a
 single argument, the (internal) name of the schema.

.. data:: schema_pre_activate

 Sent just before a schema will be activated. May be used to abort this by
 throwing an exception.

.. data:: schema_post_activate

 Sent immediately after a schema has been activated.

.. data:: session_requesting_schema_change

 Sent when a user-session has requested (and is, according to default rules,
 allowed to change to this schema). May be used to prevent the change, by
 throwing an exception.

.. data:: session_schema_changed

 Sent when a user-session has changed it's schema.

"""

import logging

from django.dispatch import Signal
from django.db import connection
from django.core.cache import cache

from .schema import (
 _schema_exists, is_shared_model, get_schema_model,
 get_active_schema_name
)

LOGGER = logging.getLogger(__name__)
LOGGER.addHandler(logging.NullHandler())

Provided signals.

schema_created = Signal(providing_args=["schema"])

schema_pre_activate = Signal(providing_args=["schema"])
schema_post_activate = Signal(providing_args=["schema"])

session_requesting_schema_change = Signal(providing_args=["user", "schema", "session"])
session_schema_changed = Signal(providing_args=["user", "schema", "session"])

Signal handlers.

[docs]def create_schema(sender, instance, created, **kwargs):
 """
 Actually create the schema in the database.

 We do this in a signal handler instead of .save() so we can catch
 those created using raw methods.
 """
 if created:
 schema_name = instance.schema

 cursor = connection.cursor()

 if _schema_exists(schema_name):
 LOGGER.warn('Attempt to create an existing schema: %s' % schema_name)
 return

 cursor.execute("SELECT clone_schema('__template__', %s)", [schema_name])
 cursor.close()

 if schema_name != '__template__':
 schema_created.send(sender=get_schema_model(), schema=schema_name)

 LOGGER.info('New schema created: %s' % schema_name)

[docs]def inject_schema_attribute(sender, instance, **kwargs):
 """
 A signal listener that injects the current schema on the object
 just after it is instantiated.

 You may use this in conjunction with :class:`MultiSchemaMixin`, it will
 respect any value that has already been set on the instance.
 """
 if is_shared_model(sender):
 return
 if not getattr(instance, '_schema', None):
 instance._schema = get_active_schema_name()

[docs]def invalidate_cache(sender, **kwargs):
 """
 A signal listener designed to invalidate the cache of a single
 user's visible schemata items.
 """
 if kwargs['reverse']:
 cache.delete('visible-schemata-%s' % kwargs['instance'].pk)
 else:
 if kwargs['pk_set']:
 for pk in kwargs['pk_set']:
 cache.delete('visible-schemata-%s' % pk)

[docs]def invalidate_all_user_caches(sender, **kwargs):
 """
 A signal listener that invalidates all schemata caches for all users
 who have access to the sender instance (schema).
 """
 cache.delete('active-schemata')
 cache.delete('all-schemata')
 for user in kwargs['instance'].users.values('pk'):
 cache.delete('visible-schemata-%s' % user['pk'])

[docs]def invalidate_all_caches(sender, **kwargs):
 """
 Invalidate all schemata caches. Not entirely sure this one works.
 """
 if sender.name == 'boardinghouse':
 cache.delete('active-schemata')
 cache.delete('all-schemata')

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/operations.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.operations

from django.db import migrations

[docs]class AddField(migrations.AddField):
 """
 Allow adding a field to a model from a different application.

 This enables us to add the field to contrib.admin.LogEntry that
 stores the schema for an aware object.
 """
 def __init__(self, *args, **kwargs):
 self.app_label = kwargs.pop('app_label')
 super(AddField, self).__init__(*args, **kwargs)

 def state_forwards(self, app_label, state):
 return super(AddField, self).state_forwards(self.app_label, state)

 def database_forwards(self, app_label, *args):
 return super(AddField, self).database_forwards(self.app_label, *args)

 def state_backwards(self, app_label, state):
 return super(AddField, self).state_backwards(self.app_label, state)

 def database_backwards(self, app_label, *args):
 return super(AddField, self).database_backwards(self.app_label, *args)

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

code/boardinghouse.contrib.template.migrations.0001_initial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-boardinghouse 0.3.5 documentation »

 		Code »

 		boardinghouse package »

 		boardinghouse.contrib package »

 		boardinghouse.contrib.template package »

 		boardinghouse.contrib.template.migrations package »

boardinghouse.contrib.template.migrations.0001_initial module

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/models.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.models

"""
"""
import logging

from django.conf import settings
from django.core.cache import cache
from django.core.validators import RegexValidator
from django.db import models
from django.forms import ValidationError
from django.utils.translation import ugettext_lazy as _

from .base import SharedSchemaMixin
from .schema import activate_schema, deactivate_schema, _schema_exists

LOGGER = logging.getLogger(__name__)
LOGGER.addHandler(logging.NullHandler())

SCHEMA_NAME_VALIDATOR_MESSAGE = u'May only contain lowercase letters, digits and underscores. '\
 u'Must start with a letter.'

schema_name_validator = RegexValidator(
 regex=r'^[a-z][a-z0-9_]*$',
 message=_(SCHEMA_NAME_VALIDATOR_MESSAGE)
)

class SchemaQuerySet(models.query.QuerySet):
 def bulk_create(self, *args, **kwargs):
 # Normally a bulk_create would not trigger the post_save signal for
 # each instance. We need to rely on that firing to create the actual
 # database schema, so we manually trigger that signal.
 created = super(SchemaQuerySet, self).bulk_create(*args, **kwargs)
 for schema in created:
 models.signals.post_save.send(sender=self.model,
 instance=schema,
 created=True)
 cache.delete('active-schemata')
 return created

 def mass_create(self, *args):
 # A helper method that creates schemata with name/schema the same.
 # Perhaps it could slugify the schema value?
 self.bulk_create([self.model(name=x, schema=x) for x in args])
 cache.delete('active-schemata')

 def active(self):
 return self.filter(is_active=True)

 def inactive(self):
 return self.filter(is_active=False)

 def delete(self):
 self.update(is_active=False)

 def activate(self, pk):
 self.get(pk=pk).activate()

[docs]class AbstractSchema(SharedSchemaMixin, models.Model):
 """
 The Schema model provides an abstraction for a Postgres schema.

 It will take care of creating a cloned copy of the template_schema
 when it is created, and also has the ability to activate and deactivate
 itself (at the start and end of the request cycle would be a good plan).
 """

 schema = models.CharField(max_length=36, primary_key=True, unique=True,
 validators=[schema_name_validator],
 help_text='
'.join([
 u'The internal name of the schema.',
 SCHEMA_NAME_VALIDATOR_MESSAGE,
 u'May not be changed after creation.',
]),
)
 name = models.CharField(max_length=128, unique=True,
 help_text=_(u'The display name of the schema.')
)
 is_active = models.BooleanField(default=True,
 help_text=_(u'Use this instead of deleting schemata.')
)

 objects = SchemaQuerySet.as_manager()

 class Meta:
 abstract = True

 def __init__(self, *args, **kwargs):
 super(AbstractSchema, self).__init__(*args, **kwargs)
 self._initial_schema = self.schema

 def __unicode__(self):
 return u'%s (%s)' % (self.name, self.schema)

 def save(self, *args, **kwargs):
 self._meta.get_field('schema').run_validators(self.schema)

 # We want to prevent someone creating a new schema with
 # the same internal name as an existing one. We assume that
 # if we haven't been saved, then there should not be a
 # schema in the database with this name.
 if self._initial_schema in [None, ''] or 'force_insert' in kwargs:
 if _schema_exists(self.schema):
 raise ValidationError(_('Schema %s already in use') % self.schema)
 elif self.schema != self._initial_schema:
 raise ValidationError(_('may not change schema after creation.'))

 return super(AbstractSchema, self).save(*args, **kwargs)

 def delete(self):
 self.is_active = False
 self.save()

 def activate(self, cursor=None):
 activate_schema(self.schema)

 @classmethod
 def deactivate(cls, cursor=None):
 deactivate_schema()

[docs]class Schema(AbstractSchema):
 """
 The default schema model.

 Unless you set `settings.BOARDINGHOUSE_SCHEMA_MODEL`, this model will
 be used for storing the schema objects.
 """
 users = models.ManyToManyField(settings.AUTH_USER_MODEL,
 blank=True, related_name='schemata',
 help_text=_(u'Which users may access data from this schema.')
)

 class Meta:
 app_label = 'boardinghouse'
 verbose_name_plural = 'schemata'
 swappable = 'BOARDINGHOUSE_SCHEMA_MODEL'

This is a bit of fancy trickery to stick the property _is_shared_model
on every model class, returning False, unless it has been explicitly
set to True in the model definition (see base.py for examples).
class ClassProperty(property):
 def __get__(self, cls, owner):
 return self.fget.__get__(None, owner)()

def _is_shared_model(cls):
 return cls._meta.auto_created and cls._meta.auto_created._is_shared_model

models.Model._is_shared_model = ClassProperty(classmethod(_is_shared_model))

We need to monkey-patch __eq__ on models.Model
__old_eq__ = models.Model.__eq__

def __eq__(self, other):
 from .schema import is_shared_model
 if is_shared_model(self):
 return __old_eq__(self, other)
 return __old_eq__(self, other) and self._schema == other._schema

models.Model.__eq__ = __eq__

Add a cached method that prevents user.schemata.all() queries from
being needlessly duplicated.
[docs]def visible_schemata(user):
 """The list of visible schemata for the given user.

 This is fetched from the cache, if the value is available. There are
 signal listeners that automatically invalidate the cache when conditions
 that are detected that would indicate this value has changed.
 """
 schemata = cache.get('visible-schemata-%s' % user.pk)
 if schemata is None:
 schemata = user.schemata.active()
 cache.set('visible-schemata-%s' % user.pk, schemata)

 return schemata

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/base.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.base

from __future__ import unicode_literals

"""
"""
from django.db import models

[docs]class MultiSchemaMixin(object):
 """
 A mixin that allows for fetching objects from multiple
 schemata in the one request.

 Consider this experimental.

 .. note:: You probably don't want want this on your QuerySet, just
 on your Manager.
 """
[docs] def from_schemata(self, *schemata):
 """
 Perform these queries across several schemata.
 """
 qs = self.get_queryset()
 query = str(qs.query)

 if len(schemata) == 1 and hasattr(schemata[0], 'filter'):
 schemata = schemata[0]

 # We want to fetch all objects from selected schemata.
 # We need to inject the schema as an attribute _schema on the query,
 # so we can access it later.
 multi_query = [
 query.replace(
 'SELECT ', "SELECT '%s' as _schema, " % schema.schema
).replace(
 'FROM "', 'FROM "%s"."' % schema.schema
) for schema in schemata
]

 return self.raw(" UNION ALL ".join(multi_query))

[docs]class MultiSchemaManager(MultiSchemaMixin, models.Manager):
 """
 A Manager that allows for fetching objects from multiple schemata
 in the one request.
 """

[docs]class SharedSchemaMixin(object):
 """
 A Mixin that ensures a subclass will be available in the
 shared schema.
 """
 _is_shared_model = True

[docs]class SharedSchemaModel(SharedSchemaMixin, models.Model):
 """
 A Base class for models that should be in the shared schema.

 You should inherit from this class if your model _must_ be in
 the shared schema. Just setting the `_is_shared_model` attribute
 will not be picked up for migrations.
 """

 class Meta:
 abstract = True

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/backends/postgres/schema.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.backends.postgres.schema

from __future__ import unicode_literals

from collections import defaultdict

from django.db.backends.postgresql_psycopg2 import schema
from django.conf import settings

import sqlparse
from sqlparse.tokens import DDL, DML, Keyword

from ...schema import is_shared_table
from ...schema import get_schema_model, _schema_table_exists
from ...schema import deactivate_schema, activate_template_schema

[docs]def get_constraints(cursor, table_name):
 """
 Retrieves any constraints or keys (unique, pk, fk, check, index) across one or more columns.

 This is copied (almost) verbatim from django, but replaces the use of "public" with "public" + "__template__".

 We assume that this will find the relevant constraint, and rely on our operations keeping the others in sync.
 """
 constraints = {}
 # Loop over the key table, collecting things as constraints
 # This will get PKs, FKs, and uniques, but not CHECK
 cursor.execute("""
 SELECT
 kc.constraint_name,
 kc.column_name,
 c.constraint_type,
 array(SELECT table_name::text || '.' || column_name::text
 FROM information_schema.constraint_column_usage
 WHERE constraint_name = kc.constraint_name)
 FROM information_schema.key_column_usage AS kc
 JOIN information_schema.table_constraints AS c ON
 kc.table_schema = c.table_schema AND
 kc.table_name = c.table_name AND
 kc.constraint_name = c.constraint_name
 WHERE
 kc.table_schema IN (%s, %s) AND
 kc.table_name = %s
 ORDER BY kc.ordinal_position ASC
 """, [settings.PUBLIC_SCHEMA, "__template__", table_name])
 for constraint, column, kind, used_cols in cursor.fetchall():
 # If we're the first column, make the record
 if constraint not in constraints:
 constraints[constraint] = {
 "columns": [],
 "primary_key": kind.lower() == "primary key",
 "unique": kind.lower() in ["primary key", "unique"],
 "foreign_key": tuple(used_cols[0].split(".", 1)) if kind.lower() == "foreign key" else None,
 "check": False,
 "index": False,
 }
 # Record the details
 constraints[constraint]['columns'].append(column)
 # Now get CHECK constraint columns
 cursor.execute("""
 SELECT kc.constraint_name, kc.column_name
 FROM information_schema.constraint_column_usage AS kc
 JOIN information_schema.table_constraints AS c ON
 kc.table_schema = c.table_schema AND
 kc.table_name = c.table_name AND
 kc.constraint_name = c.constraint_name
 WHERE
 c.constraint_type = 'CHECK' AND
 kc.table_schema IN (%s, %s) AND
 kc.table_name = %s
 """, [settings.PUBLIC_SCHEMA, "__template__", table_name])
 for constraint, column in cursor.fetchall():
 # If we're the first column, make the record
 if constraint not in constraints:
 constraints[constraint] = {
 "columns": [],
 "primary_key": False,
 "unique": False,
 "foreign_key": None,
 "check": True,
 "index": False,
 }
 # Record the details
 constraints[constraint]['columns'].append(column)
 # Now get indexes
 cursor.execute("""
 SELECT
 c2.relname,
 ARRAY(
 SELECT (SELECT attname FROM pg_catalog.pg_attribute WHERE attnum = i AND attrelid = c.oid)
 FROM unnest(idx.indkey) i
),
 idx.indisunique,
 idx.indisprimary
 FROM pg_catalog.pg_class c, pg_catalog.pg_class c2,
 pg_catalog.pg_index idx, pg_catalog.pg_namespace n
 WHERE c.oid = idx.indrelid
 AND idx.indexrelid = c2.oid
 AND n.oid = c.relnamespace
 AND n.nspname IN (%s, %s)
 AND c.relname = %s
 """, [settings.PUBLIC_SCHEMA, '__template__', table_name])
 for index, columns, unique, primary in cursor.fetchall():
 if index not in constraints:
 constraints[index] = {
 "columns": list(columns),
 "primary_key": primary,
 "unique": unique,
 "foreign_key": None,
 "check": False,
 "index": True,
 }
 return constraints

def get_index_data(cursor, index_name):

 cursor.execute('''SELECT
 c.relname AS table_name,
 n.nspname AS schema_name
FROM pg_catalog.pg_class c, pg_catalog.pg_class c2,
 pg_catalog.pg_index idx, pg_catalog.pg_namespace n
WHERE c.oid = idx.indrelid
 AND idx.indexrelid = c2.oid
 AND n.oid = c.relnamespace
 AND n.nspname IN (%s, %s)
 AND c2.relname = %s
 ''', [settings.PUBLIC_SCHEMA, '__template__', index_name])

 return [table_name for (table_name, schema_name) in cursor.fetchall()]

def get_table_and_schema(sql, cursor):
 parsed = sqlparse.parse(sql)[0]
 grouped = defaultdict(list)
 identifiers = []

 for token in parsed.tokens:
 if token.ttype:
 grouped[token.ttype].append(token.value)
 elif token.get_name():
 identifiers.append(token)

 if grouped[DDL] and grouped[DDL][0] in ['CREATE', 'DROP', 'ALTER', 'CREATE OR REPLACE']:
 # We may care about this.
 keywords = grouped[Keyword]
 # DROP INDEX does not have a table associated with it.
 # We will have to hit the database to see what schema(ta) have an index with that name.
 if 'INDEX' in keywords and grouped[DDL][0] == 'DROP':
 return get_index_data(cursor, identifiers[0].get_name())[0], None
 if 'VIEW' in keywords or 'TABLE' in keywords:
 # We care about identifier 0
 if identifiers:
 return identifiers[0].get_name(), identifiers[0].get_parent_name()
 elif 'TRIGGER' in keywords or 'INDEX' in keywords:
 # We care about identifier 1
 if len(identifiers) > 1:
 return identifiers[1].get_name(), identifiers[1].get_parent_name()

 # We also care about other non-DDL statements, as the implication is that they
 # should apply to every known schema, if we are updating as part of a migration.
 if grouped[DML] and grouped[DML][0] in ['INSERT INTO', 'UPDATE', 'DELETE FROM']:
 if identifiers:
 return identifiers[0].get_name(), identifiers[0].get_parent_name()

 return None, None

class DatabaseSchemaEditor(schema.DatabaseSchemaEditor):

 def __exit__(self, exc_type, exc_value, traceback):
 # It seems that actions that add stuff to the deferred sql
 # will fire per-schema, so we can end up with multiples.
 # We'll reduce that to a unique list.
 # Can't just do a set, as that may change ordering.
 deferred_sql = []
 for sql in self.deferred_sql:
 if sql not in deferred_sql:
 deferred_sql.append(sql)
 self.deferred_sql = deferred_sql
 return super(DatabaseSchemaEditor, self).__exit__(exc_type, exc_value, traceback)
 # If we manage to rewrite the SQL so it injects schema clauses, then we can remove this override.

 def execute(self, sql, params=None):
 # We want to execute our SQL multiple times, if it is per-schema.
 execute = super(DatabaseSchemaEditor, self).execute

 table_name, schema_name = get_table_and_schema(sql, self.connection.cursor())

 # TODO: try to get the apps from current project_state, not global apps.
 if table_name and not schema_name and not is_shared_table(table_name):
 if _schema_table_exists():
 for each in get_schema_model().objects.all():
 each.activate()
 execute(sql, params)

 activate_template_schema()
 execute(sql, params)
 deactivate_schema()
 else:
 execute(sql, params)

 def _constraint_names(self, model, column_names=None, unique=None,
 primary_key=None, index=None, foreign_key=None,
 check=None):
 """
 Returns all constraint names matching the columns and conditions
 """
 column_names = list(column_names) if column_names else None
 with self.connection.cursor() as cursor:
 constraints = get_constraints(cursor, model._meta.db_table)
 result = []
 for name, infodict in constraints.items():
 if column_names is None or column_names == infodict['columns']:
 if unique is not None and infodict['unique'] != unique:
 continue
 if primary_key is not None and infodict['primary_key'] != primary_key:
 continue
 if index is not None and infodict['index'] != index:
 continue
 if check is not None and infodict['check'] != check:
 continue
 if foreign_key is not None and not infodict['foreign_key']:
 continue
 result.append(name)

 return result

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/django/dispatch/dispatcher.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for django.dispatch.dispatcher

import sys
import threading
import warnings
import weakref

from django.utils import six
from django.utils.deprecation import RemovedInDjango20Warning
from django.utils.inspect import func_accepts_kwargs
from django.utils.six.moves import range

if six.PY2:
 from .weakref_backports import WeakMethod
else:
 from weakref import WeakMethod

def _make_id(target):
 if hasattr(target, '__func__'):
 return (id(target.__self__), id(target.__func__))
 return id(target)
NONE_ID = _make_id(None)

A marker for caching
NO_RECEIVERS = object()

class Signal(object):
 """
 Base class for all signals

 Internal attributes:

 receivers
 { receiverkey (id) : weakref(receiver) }
 """
 def __init__(self, providing_args=None, use_caching=False):
 """
 Create a new signal.

 providing_args
 A list of the arguments this signal can pass along in a send() call.
 """
 self.receivers = []
 if providing_args is None:
 providing_args = []
 self.providing_args = set(providing_args)
 self.lock = threading.Lock()
 self.use_caching = use_caching
 # For convenience we create empty caches even if they are not used.
 # A note about caching: if use_caching is defined, then for each
 # distinct sender we cache the receivers that sender has in
 # 'sender_receivers_cache'. The cache is cleaned when .connect() or
 # .disconnect() is called and populated on send().
 self.sender_receivers_cache = weakref.WeakKeyDictionary() if use_caching else {}
 self._dead_receivers = False

 def connect(self, receiver, sender=None, weak=True, dispatch_uid=None):
 """
 Connect receiver to sender for signal.

 Arguments:

 receiver
 A function or an instance method which is to receive signals.
 Receivers must be hashable objects.

 If weak is True, then receiver must be weak referenceable.

 Receivers must be able to accept keyword arguments.

 If a receiver is connected with a dispatch_uid argument, it
 will not be added if another receiver was already connected
 with that dispatch_uid.

 sender
 The sender to which the receiver should respond. Must either be
 of type Signal, or None to receive events from any sender.

 weak
 Whether to use weak references to the receiver. By default, the
 module will attempt to use weak references to the receiver
 objects. If this parameter is false, then strong references will
 be used.

 dispatch_uid
 An identifier used to uniquely identify a particular instance of
 a receiver. This will usually be a string, though it may be
 anything hashable.
 """
 from django.conf import settings

 # If DEBUG is on, check that we got a good receiver
 if settings.configured and settings.DEBUG:
 assert callable(receiver), "Signal receivers must be callable."

 # Check for **kwargs
 if not func_accepts_kwargs(receiver):
 raise ValueError("Signal receivers must accept keyword arguments (**kwargs).")

 if dispatch_uid:
 lookup_key = (dispatch_uid, _make_id(sender))
 else:
 lookup_key = (_make_id(receiver), _make_id(sender))

 if weak:
 ref = weakref.ref
 receiver_object = receiver
 # Check for bound methods
 if hasattr(receiver, '__self__') and hasattr(receiver, '__func__'):
 ref = WeakMethod
 receiver_object = receiver.__self__
 if six.PY3:
 receiver = ref(receiver)
 weakref.finalize(receiver_object, self._remove_receiver)
 else:
 receiver = ref(receiver, self._remove_receiver)

 with self.lock:
 self._clear_dead_receivers()
 for r_key, _ in self.receivers:
 if r_key == lookup_key:
 break
 else:
 self.receivers.append((lookup_key, receiver))
 self.sender_receivers_cache.clear()

 def disconnect(self, receiver=None, sender=None, weak=None, dispatch_uid=None):
 """
 Disconnect receiver from sender for signal.

 If weak references are used, disconnect need not be called. The receiver
 will be remove from dispatch automatically.

 Arguments:

 receiver
 The registered receiver to disconnect. May be none if
 dispatch_uid is specified.

 sender
 The registered sender to disconnect

 dispatch_uid
 the unique identifier of the receiver to disconnect
 """
 if weak is not None:
 warnings.warn("Passing `weak` to disconnect has no effect.",
 RemovedInDjango20Warning, stacklevel=2)
 if dispatch_uid:
 lookup_key = (dispatch_uid, _make_id(sender))
 else:
 lookup_key = (_make_id(receiver), _make_id(sender))

 disconnected = False
 with self.lock:
 self._clear_dead_receivers()
 for index in range(len(self.receivers)):
 (r_key, _) = self.receivers[index]
 if r_key == lookup_key:
 disconnected = True
 del self.receivers[index]
 break
 self.sender_receivers_cache.clear()
 return disconnected

 def has_listeners(self, sender=None):
 return bool(self._live_receivers(sender))

 def send(self, sender, **named):
 """
 Send signal from sender to all connected receivers.

 If any receiver raises an error, the error propagates back through send,
 terminating the dispatch loop. So it's possible that all receivers
 won't be called if an error is raised.

 Arguments:

 sender
 The sender of the signal. Either a specific object or None.

 named
 Named arguments which will be passed to receivers.

 Returns a list of tuple pairs [(receiver, response), ...].
 """
 responses = []
 if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
 return responses

 for receiver in self._live_receivers(sender):
 response = receiver(signal=self, sender=sender, **named)
 responses.append((receiver, response))
 return responses

 def send_robust(self, sender, **named):
 """
 Send signal from sender to all connected receivers catching errors.

 Arguments:

 sender
 The sender of the signal. Can be any python object (normally one
 registered with a connect if you actually want something to
 occur).

 named
 Named arguments which will be passed to receivers. These
 arguments must be a subset of the argument names defined in
 providing_args.

 Return a list of tuple pairs [(receiver, response), ...]. May raise
 DispatcherKeyError.

 If any receiver raises an error (specifically any subclass of
 Exception), the error instance is returned as the result for that
 receiver. The traceback is always attached to the error at
 ``__traceback__``.
 """
 responses = []
 if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS:
 return responses

 # Call each receiver with whatever arguments it can accept.
 # Return a list of tuple pairs [(receiver, response), ...].
 for receiver in self._live_receivers(sender):
 try:
 response = receiver(signal=self, sender=sender, **named)
 except Exception as err:
 if not hasattr(err, '__traceback__'):
 err.__traceback__ = sys.exc_info()[2]
 responses.append((receiver, err))
 else:
 responses.append((receiver, response))
 return responses

 def _clear_dead_receivers(self):
 # Note: caller is assumed to hold self.lock.
 if self._dead_receivers:
 self._dead_receivers = False
 new_receivers = []
 for r in self.receivers:
 if isinstance(r[1], weakref.ReferenceType) and r[1]() is None:
 continue
 new_receivers.append(r)
 self.receivers = new_receivers

 def _live_receivers(self, sender):
 """
 Filter sequence of receivers to get resolved, live receivers.

 This checks for weak references and resolves them, then returning only
 live receivers.
 """
 receivers = None
 if self.use_caching and not self._dead_receivers:
 receivers = self.sender_receivers_cache.get(sender)
 # We could end up here with NO_RECEIVERS even if we do check this case in
 # .send() prior to calling _live_receivers() due to concurrent .send() call.
 if receivers is NO_RECEIVERS:
 return []
 if receivers is None:
 with self.lock:
 self._clear_dead_receivers()
 senderkey = _make_id(sender)
 receivers = []
 for (receiverkey, r_senderkey), receiver in self.receivers:
 if r_senderkey == NONE_ID or r_senderkey == senderkey:
 receivers.append(receiver)
 if self.use_caching:
 if not receivers:
 self.sender_receivers_cache[sender] = NO_RECEIVERS
 else:
 # Note, we must cache the weakref versions.
 self.sender_receivers_cache[sender] = receivers
 non_weak_receivers = []
 for receiver in receivers:
 if isinstance(receiver, weakref.ReferenceType):
 # Dereference the weak reference.
 receiver = receiver()
 if receiver is not None:
 non_weak_receivers.append(receiver)
 else:
 non_weak_receivers.append(receiver)
 return non_weak_receivers

 def _remove_receiver(self, receiver=None):
 # Mark that the self.receivers list has dead weakrefs. If so, we will
 # clean those up in connect, disconnect and _live_receivers while
 # holding self.lock. Note that doing the cleanup here isn't a good
 # idea, _remove_receiver() will be called as side effect of garbage
 # collection, and so the call can happen while we are already holding
 # self.lock.
 self._dead_receivers = True

def receiver(signal, **kwargs):
 """
 A decorator for connecting receivers to signals. Used by passing in the
 signal (or list of signals) and keyword arguments to connect::

 @receiver(post_save, sender=MyModel)
 def signal_receiver(sender, **kwargs):
 ...

 @receiver([post_save, post_delete], sender=MyModel)
 def signals_receiver(sender, **kwargs):
 ...
 """
 def _decorator(func):
 if isinstance(signal, (list, tuple)):
 for s in signal:
 s.connect(func, **kwargs)
 else:
 signal.connect(func, **kwargs)
 return func
 return _decorator

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/contrib/template/models.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.contrib.template.models

from django.db import models
from django.dispatch import receiver

from boardinghouse.base import SharedSchemaMixin

[docs]class TemplateSchema(SharedSchemaMixin, models.Model):
 """
 A ``boardinghouse.contrib.template.models.TemplateSchema``
 """
 name = models.CharField(max_length=128, unique=True)

 class Meta:
 default_permissions = ('add', 'change', 'delete', 'view', 'activate')
 verbose_name_plural = u'template schemata'

 def __unicode__(self):
 return self.name

 @property
 def schema(self):
 return '__template_%i' % self.pk

 @classmethod
 def create_from_schema(cls, schema='__template__'):
 pass

 def update_from_schema(self, schema):
 pass

 def clone_to_schema(self, schema):
 pass

@receiver(models.signals.post_save, sender=TemplateSchema)
def create_template_schema(sender, instance, **kwargs):
 assert None, "Create schema missing."

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/backends/postgres/base.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.backends.postgres.base

from __future__ import unicode_literals

from django.db.backends.postgresql_psycopg2 import base

from .schema import DatabaseSchemaEditor

[docs]class DatabaseWrapper(base.DatabaseWrapper):
 """
 This is a simple subclass of the Postrges DatabaseWrapper,
 but using our new :class:`DatabaseSchemaEditor` class.
 """

 def schema_editor(self, *args, **kwargs):
 return DatabaseSchemaEditor(self, *args, **kwargs)

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

_modules/boardinghouse/contrib/invite/forms.html

 Navigation

 		
 index

 		
 modules |

 		django-boardinghouse 0.3.5 documentation »

 		Module code »

 Source code for boardinghouse.contrib.invite.forms

import datetime
import uuid

from django import forms
from django.utils.translation import ugettext_lazy as _

from boardinghouse.schema import get_active_schema
from .models import Invitation

ALREADY_REDEEMED = _('This invitation has already been redeemed.')
EXPIRED = _('This invitation has expired.')
ACCEPTED = _('This invitation has already been accepted.')
DECLINED = _('This invitation has already been declined.')

[docs]class InvitePersonForm(forms.ModelForm):
 """
 A form that can be used to create a new invitation for a person
 to a schema.

 This will only allow you to invite someone to the current schema.

 It will automatically generate a redemption code, that will be a
 part of the url the user needs to click on in order to accept or
 deny the invitation.

 The message will be emailed.
 """
 class Meta:
 model = Invitation
 fields = ('email', 'message',)

 def __init__(self, *args, **kwargs):
 self.user = kwargs.pop('user')
 super(InvitePersonForm, self).__init__(*args, **kwargs)

 def save(self, *args, **kwargs):
 self.instance.schema = get_active_schema()
 self.instance.redemption_code = uuid.uuid4()
 self.instance.sender = self.user
 # TODO: email the user.
 return super(InvitePersonForm, self).save(*args, **kwargs)

[docs]class AcceptForm(forms.ModelForm):
 """
 A form that can be used to accept an invitation to a schema.
 """

 class Meta:
 model = Invitation
 fields = ()

 def __init__(self, *args, **kwargs):
 self.user = kwargs.pop('user')
 super(AcceptForm, self).__init__(*args, **kwargs)

 def clean(self):
 if self.instance.expired:
 raise forms.ValidationError(EXPIRED)
 if self.instance.redeemed:
 raise forms.ValidationError(ACCEPTED)
 if self.instance.declined:
 raise forms.ValidationError(DECLINED)
 return self.cleaned_data

 def save(self, *args, **kwargs):
 self.user.schemata.add(self.instance.schema)
 self.instance.accepted_at = datetime.datetime.utcnow()
 self.instance.accepted_by = self.user
 return super(AcceptForm, self).save(*args, **kwargs)

class DeclineForm(forms.ModelForm):

 class Meta:
 model = Invitation
 fields = ()

 def clean(self):
 # In this case, we just want to tell the user this object
 # has been accepted, since they attempted to decline it.
 if self.instance.accepted:
 raise forms.ValidationError(ACCEPTED)
 return {}

 def save(self, *args, **kwargs):
 self.instance.declined_at = datetime.datetime.utcnow()
 return super(DeclineForm, self).save(*args, **kwargs)

 © Copyright 2014, Matthew Schinckel.
 Created using Sphinx 1.3.5.

